Lösning 1.3:1d

Förberedande kurs i matematik 2

Version från den 29 juni 2010 kl. 11.56; Tek (Diskussion | bidrag)
(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till: navigering, sök

I punkterna \displaystyle x=-\tfrac{5}{2} och \displaystyle x=\tfrac{1}{2} har funktionen kritiska punkter (se figuren nedan), dvs. derivata lika med noll, men notera att \displaystyle x=-1 och \displaystyle x=-\tfrac{1}{2} inte är kritiska punkter (derivatan är inte ens definierad i dessa punkter).

[Image]

Grafen har horisontella tangenter i x = -5/2 och x = 1/2


Funktionen har lokala minimipunkter i \displaystyle x=-\tfrac{5}{2}, \displaystyle x=-\tfrac{1}{2} och i den högra ändpunkten till definitionsintervallet \displaystyle x=2, och har lokala maximipunkter i den vänstra ändpunkten \displaystyle x=-3, i \displaystyle x=-1 och \displaystyle x=\tfrac{1}{2}. Av dessa är \displaystyle x=-1 global maximipunkt och \displaystyle x=-\tfrac{5}{2} global minimipunkt.

Mellan de lokala extrempunkterna är funktionen strängt växande eller avtagande.

[Image]

[Image]

Område där funktionen är strängt avtagande Område där funktionen är strängt växande