Antag att \displaystyle \,-\displaystyle \frac{\pi}{2} \leq v \leq \displaystyle \frac{\pi}{2}\, och att \displaystyle \,\sin{v} = a\,. Uttryck med hjälp av \displaystyle \,a
För en spetsig vinkel \displaystyle \,v\, i en triangel gäller att \displaystyle \,\sin{v}=\displaystyle \frac{5}{7}\,. Bestäm \displaystyle \,\cos{v}\, och \displaystyle \,\tan{v}\,.
Bestäm \displaystyle \ \sin{v}\ och \displaystyle \ \tan{v}\ om \displaystyle \ \cos{v}=\displaystyle \frac{3}{4}\ och \displaystyle \ \displaystyle \frac{3\pi}{2} \leq v \leq 2\pi\,.
b)
Bestäm \displaystyle \ \cos{v}\ och \displaystyle \ \tan{v}\ om \displaystyle \ \sin{v}=\displaystyle \frac{3}{10}\ och \displaystyle \,v\, ligger i den andra kvadranten.
c)
Bestäm \displaystyle \ \sin{v}\ och \displaystyle \ \cos{v}\ om \displaystyle \ \tan{v}=3\ och \displaystyle \ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,.
\displaystyle \sin{x}=\displaystyle \frac{2}{3}\,,\displaystyle \ \sin{y}=\displaystyle \frac{1}{3}\ och \displaystyle \,x\,$, $\,y\, är vinklar i första kvadranten..
b)
\displaystyle \cos{x}=\displaystyle \frac{2}{5}\,, \displaystyle \ \cos{y}=\displaystyle \frac{3}{5}\ och \displaystyle \,x\,, \displaystyle \,y\, är vinklar i första kvadranten.