4.4 Övningar

Förberedande kurs i matematik 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 86: Rad 86:
|}
|}
</div>{{#NAVCONTENT:Svar|Svar 4.4:5|Lösning a |Lösning 4.4:5a|Lösning b |Lösning 4.4:5b|Lösning c |Lösning 4.4:5c}}
</div>{{#NAVCONTENT:Svar|Svar 4.4:5|Lösning a |Lösning 4.4:5a|Lösning b |Lösning 4.4:5b|Lösning c |Lösning 4.4:5c}}
 +
 +
===Övning 4.4:6===
 +
<div class="ovning">
 +
Lös ekvationen
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="50%" | <math>\sin x\cdot \cos 3x = 2\sin x</math>
 +
|b)
 +
|width="50%" | <math>\sqrt{2}\sin{x}\cos{x}=\cos{x}</math>
 +
|-
 +
|c)
 +
|width="50%" | <math>\sin 2x = -\sin x</math>
 +
|}
 +
</div>{{#NAVCONTENT:Svar|Svar 4.4:6|Lösning a |Lösning 4.4:6a|Lösning b |Lösning 4.4:6b|Lösning c |Lösning 4.4:6c}}

Versionen från 3 april 2008 kl. 11.54

       Teori          Övningar      

Övning 4.4:1

För vilka vinklar \displaystyle \,v\,, där \displaystyle \,0 \leq v\leq 2\pi\,, gäller att

a) \displaystyle \sin{v}=\displaystyle \frac{1}{2} b) \displaystyle \cos{v}=\displaystyle \frac{1}{2}
c) \displaystyle \sin{v}=1 d) \displaystyle \tan{v}=1
e) \displaystyle \cos{v}=2 f) \displaystyle \sin{v}=-\displaystyle \frac{1}{2}
g) \displaystyle \tan{v}=-\displaystyle \frac{1}{\sqrt{3}}

Övning 4.4:2

Lös ekvationen

a) \displaystyle \sin{x}=\displaystyle \frac{\sqrt{3}}{2} b) \displaystyle \cos{x}=\displaystyle \frac{1}{2} c) \displaystyle \sin{x}=0
d) \displaystyle \sin{5x}=\displaystyle \frac{1}{\sqrt{2}} e) \displaystyle \sin{5x}=\displaystyle \frac{1}{2} f) \displaystyle \cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}

Övning 4.4:3

Lös ekvationen

a) \displaystyle \cos{x}=\cos{\displaystyle \frac{\pi}{6}} b) \displaystyle \sin{x}=\sin{\displaystyle \frac{\pi}{5}}
c) \displaystyle \sin{(x+40^\circ)}=\sin{65^\circ} d) \displaystyle \sin{3x}=\sin{15^\circ}

Övning 4.4:4

Bestäm de vinklar \displaystyle \,v\, i intervallet \displaystyle \,0^\circ \leq v \leq 360^\circ\, som uppfyller \displaystyle \ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,.


Övning 4.4:5

Lös ekvationen

a) \displaystyle \sin{3x}=\sin{x} b) \displaystyle \tan{x}=\tan{4x}
c) \displaystyle \cos{5x}=\cos(x+\pi/5)

Övning 4.4:6

Lös ekvationen

a) \displaystyle \sin x\cdot \cos 3x = 2\sin x b) \displaystyle \sqrt{2}\sin{x}\cos{x}=\cos{x}
c) \displaystyle \sin 2x = -\sin x