3.1 Övningar
Förberedande kurs i matematik 1
(Skillnad mellan versioner)
Rad 94: | Rad 94: | ||
===Övning 3.1:6=== | ===Övning 3.1:6=== | ||
<div class="ovning"> | <div class="ovning"> | ||
- | + | Skriv som ett uttryck utan rottecken i nämnaren. | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) |
Versionen från 1 april 2008 kl. 14.24
Teori | Övningar |
Övning 3.1:1
Skriv i potensform
a) | \displaystyle \sqrt{2} | b) | \displaystyle \sqrt{7^5} | c) | \displaystyle \bigl(\sqrt[\scriptstyle3]{3}\,\bigr)^4 | d) | \displaystyle \sqrt{\sqrt{3}} |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Övning 3.1:2
Förenkla så långt som möjligt
a) | \displaystyle \sqrt{3^2} | b) | \displaystyle \sqrt{\left(-3\right)^2} | c) | \displaystyle \sqrt{-3^2} | d) | \displaystyle \sqrt{5}\cdot\sqrt[\scriptstyle3]{5}\cdot5 |
e) | \displaystyle \sqrt{18}\cdot\sqrt{8} | f) | \displaystyle \sqrt[\scriptstyle3]{8} | g) | \displaystyle \sqrt[\scriptstyle3]{-125} |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Lösning e
Lösning f
Lösning g
Övning 3.1:3
Förenkla så långt som möjligt
a) | \displaystyle \bigl(\sqrt{5}-\sqrt{2}\,\bigr)\bigl(\sqrt{5}+\sqrt{2}\,\bigr) | b) | \displaystyle \displaystyle \frac{\sqrt{96}}{\sqrt{18}} |
c) | \displaystyle \sqrt{16+\sqrt{16}} | d) | \displaystyle \sqrt{\displaystyle \frac{2}{3}}\bigl(\sqrt{6}-\sqrt{3}\,\bigr) |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Övning 3.1:4
Förenkla så långt som möjligt
a) | \displaystyle \sqrt{0{,}16} | b) | \displaystyle \sqrt[\scriptstyle3]{0{,}027} |
c) | \displaystyle \sqrt{50}+4\sqrt{20}-3\sqrt{18}-2\sqrt{80} | d) | \displaystyle \sqrt{48}+ \sqrt{12} +\sqrt{3} -\sqrt{75} |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Övning 3.1:5
Skriv som ett uttryck utan rottecken i nämnaren.
a) | \displaystyle \displaystyle \frac{2}{\sqrt{12}} | b) | \displaystyle \displaystyle \frac{1}{\sqrt[\scriptstyle3]{7}} | c) | \displaystyle \displaystyle \frac{2}{3+\sqrt{7}} | d) | \displaystyle \displaystyle \frac{1}{\sqrt{17}-\sqrt{13}} |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Övning 3.1:6
Skriv som ett uttryck utan rottecken i nämnaren.
a) | \displaystyle \displaystyle \frac{\sqrt{2}+3}{\sqrt{5}-2} | b) | \displaystyle \displaystyle \frac{1}{\left(\sqrt{3}-2\right)^2-2} |
c) | \displaystyle \displaystyle \frac{\displaystyle \frac{1}{\sqrt{3}}-\displaystyle \frac{1}{\sqrt{5}}}{\displaystyle \frac{1}{\sqrt{2}}-\displaystyle \frac{1}{2}} | d) | \displaystyle \displaystyle \frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{6}} |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Övning 3.1:7
Förenkla så långt som möjligt
a) | \displaystyle \displaystyle \frac{1}{\sqrt{6}-\sqrt{5}} - \displaystyle \frac{1}{\sqrt{7}-\sqrt{6}} | b) | \displaystyle \displaystyle \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}} | c) | \displaystyle \displaystyle \sqrt{153}-\sqrt{68} |
Övning 3.1:8
Avgör vilket tal som är störst av
a) | \displaystyle \sqrt[\scriptstyle3]5\ och \displaystyle \ \sqrt[\scriptstyle3]6 | b) | \displaystyle \sqrt7\ och \displaystyle \ 7 |
c) | \displaystyle \sqrt7\ och \displaystyle \ 2{,}5 | d) | \displaystyle \sqrt2\bigl(\sqrt[\scriptstyle4]3\,\bigr)^3\ och \displaystyle \ \sqrt[\scriptstyle3]2\cdot3 |
Svar
Lösning a
Lösning b
Lösning c
Lösning d