2.2 Övningar

Förberedande kurs i matematik 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 118: Rad 118:
|width="33%" | <math>f(x)=2</math>
|width="33%" | <math>f(x)=2</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.2:1|Lösning a|Lösning 2.2:1a|Lösning b|Lösning 2.2:1b|Lösning c|Lösning 2.2:1c}}
+
</div>{{#NAVCONTENT:Svar|Svar 2.2:7|Lösning a|Lösning 2.2:7a|Lösning b|Lösning 2.2:7b|Lösning c|Lösning 2.2:7c}}
 +
 
 +
===Övning 2.2:8===
 +
<div class="ovning">
 +
Rita in i ett ''xy''-plan alla punkter vars koordinater <math>\,(x,y)\,</math> uppfyller
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="33%" | <math>y \geq x </math>
 +
|b)
 +
|width="33%" | <math>y &lt; 3x -4 </math>
 +
|c)
 +
|width="33%" | <math>$2x+3y \leq 6 </math>
 +
|}
 +
</div>{{#NAVCONTENT:Svar|Svar 2.2:8|Lösning a|Lösning 2.2:8a|Lösning b|Lösning 2.2:8b|Lösning c|Lösning 2.2:8c}}

Versionen från 31 mars 2008 kl. 14.05

       Teori          Övningar      

Övning 2.2:1

Lös ekvationerna

a) \displaystyle x-2=-1 b) \displaystyle 2x+1=13
c) \displaystyle \displaystyle\frac{1}{3}x-1=x d) \displaystyle 5x+7=2x-6

Övning 2.2:2

Lös ekvationerna

a) \displaystyle \displaystyle\frac{5x}{6}-\displaystyle\frac{x+2}{9}=\displaystyle\frac{1}{2} b) \displaystyle \displaystyle\frac{8x+3}{7}-\displaystyle\frac{5x-7}{4}=2
c) \displaystyle (x+3)^2-(x-5)^2=6x+4 d) \displaystyle (x^2+4x+1)^2+3x^4-2x^2=(2x^2+2x+3)^2

Övning 2.2:3

Lös ekvationerna

a) \displaystyle \displaystyle\frac{x+3}{x-3}-\displaystyle\frac{x+5}{x-2}=0
b) \displaystyle \displaystyle\frac{4x}{4x-7}-\displaystyle\frac{1}{2x-3}=1
c) \displaystyle \left(\displaystyle\frac{1}{x-1}-\frac{1}{x+1}\right)\left(x^2+\frac{1}{2}\right)=\displaystyle\frac{6x-1}{3x-3}
d) \displaystyle \left(\displaystyle\frac{2}{x}-3\right)\left(\displaystyle\frac{1}{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0

Övning 2.2:4

a) Skriv ekvationen för linjen\displaystyle \,y=2x+3\, på formen \displaystyle \,ax+by=c\,
b) Skriv ekvationen för linjen\displaystyle ,3x+4y-5=0 på formen \displaystyle \,y=kx+m\,

Övning 2.2:5

a) Bestäm ekvationen för den räta linje som går genom punkterna\displaystyle \,(2,3)\, och \displaystyle \,(3,0)\,
b) Bestäm ekvationen för den räta linje som har riktningskoefficient\displaystyle \,-3\, och går genom punkten \displaystyle \,(1,-2)\,
c) Bestäm ekvationen för den räta linje som går genom punkten \displaystyle \,(-1,2)\, och är parallell med linjen \displaystyle \,y=3x+1\,
d) Bestäm ekvationen för den räta linje som går genom punkten \displaystyle \,(2,4)\, och är vinkelrät mot linjen \displaystyle \,y=2x+5\,
e) Bestäm riktningskoefficienten, \displaystyle \,k\, för den räta linje som skär x-axeln i punkten \displaystyle \,(5,0)\, och y-axeln i punkten \displaystyle \,(0,-8)\,

Övning 2.2:6

Finn skärningspunkten mellan följande linjer

a) \displaystyle y=3x+5\ och x-axeln b) \displaystyle y=-x+5\ och y-axeln
c) \displaystyle 4x+5y+6=0\ och y-axeln d) \displaystyle x+y+1=0\ och \displaystyle \ x=12
e) \displaystyle 2x+y-1=0\ och \displaystyle \ y-2x-2=0

Övning 2.2:7

Skissera grafen till följande funktioner

a) \displaystyle f(x)=3x-2 b) \displaystyle f(x)=2-x c) \displaystyle f(x)=2

Övning 2.2:8

Rita in i ett xy-plan alla punkter vars koordinater \displaystyle \,(x,y)\, uppfyller

a) \displaystyle y \geq x b) \displaystyle y < 3x -4 c) \displaystyle $2x+3y \leq 6