Answer 3.3:6

From Förberedande kurs i matematik 2

Revision as of 14:09, 16 September 2008 by Tekbot (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search
Solutions: \displaystyle z= \left\{\eqalign{&\textstyle\sqrt[\scriptstyle 4]{2}\bigl(\cos\frac{\pi}{8}+i\,\sin\frac{\pi}{8}\bigr)\cr &\textstyle\sqrt[\scriptstyle 4]{2}\bigl(\cos\frac{9\pi}{8}+i\,\sin\frac{9\pi}{8}\bigr)}\right. = \left\{\eqalign{&\textstyle\phantom{-}{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}+2}\vphantom{2^{2^{\scriptstyle 2}}}}+i\,{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}-2}\vphantom{2^{2^{\scriptstyle 2}}}}\cr &\textstyle -{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}+2}\vphantom{2^{2^{\scriptstyle 2}}}}-i\,{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}-2}\vphantom{2^{2^{\scriptstyle 2}}}}}\right.
Expression: \displaystyle \displaystyle\tan \frac{\pi}{8} = \sqrt{2} - 1