Solution 3.4:5

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m
Current revision (18:11, 1 September 2011) (edit) (undo)
(bug fix)
 
Line 17: Line 17:
&= (z^2-2cz+c^2)(z-c)(z-d)\\[5pt]
&= (z^2-2cz+c^2)(z-c)(z-d)\\[5pt]
&= (z^3-3cz^2+3c^2z-c^3)(z-d)\\[5pt]
&= (z^3-3cz^2+3c^2z-c^3)(z-d)\\[5pt]
-
&= z^4-(3c+d)z^3+3c(c+d)z^2-c^2(c-3d)z+c^3d
+
&= z^4-(3c+d)z^3+3c(c+d)z^2-c^2(c+3d)z+c^3d
\end{align}</math>}}
\end{align}</math>}}
and this means that we must have
and this means that we must have
-
{{Displayed math||<math>z^4-6z^2+az+b = z^4-(3c+d)z^3+3c(c+d)z^2-c^2(c-3d)z+c^3d\,\textrm{.}</math>}}
+
{{Displayed math||<math>z^4-6z^2+az+b = z^4-(3c+d)z^3+3c(c+d)z^2-c^2(c+3d)z+c^3d\,\textrm{.}</math>}}
Because two polynomials are equal if an only if their coefficients are equal, this gives
Because two polynomials are equal if an only if their coefficients are equal, this gives
Line 29: Line 29:
3c+d &= 0\,,\\[5pt]
3c+d &= 0\,,\\[5pt]
3c(c+d) &= -6\,,\\[5pt]
3c(c+d) &= -6\,,\\[5pt]
-
-c^2(c-3d) &= a\,,\\[5pt]
+
-c^2(c+3d) &= a\,,\\[5pt]
c^3d &= b\,\textrm{.}
c^3d &= b\,\textrm{.}
\end{align}\right.</math>}}
\end{align}\right.</math>}}
Line 45: Line 45:
<math>\begin{align}
<math>\begin{align}
-
c=1,\ d=-3:\quad a &= -1^2\cdot (1-3\cdot (-3)) = 8\,,\\[5pt]
+
c=1,\ d=-3:\quad a &= -1^2\cdot (1+3\cdot (-3)) = 8\,,\\[5pt]
b &= 1^3\cdot (-3) = -3\,,\\[10pt]
b &= 1^3\cdot (-3) = -3\,,\\[10pt]
-
c=-1,\ d=3:\quad a &= -(-1)^2\cdot (-1-3\cdot 3) = 10\,,\\[5pt]
+
c=-1,\ d=3:\quad a &= -(-1)^2\cdot (-1+3\cdot 3) = -8\,,\\[5pt]
b &= (-1)^3\cdot 3 = -3\,\textrm{.}
b &= (-1)^3\cdot 3 = -3\,\textrm{.}
\end{align}</math>
\end{align}</math>
Line 56: Line 56:
:*<math>a=8</math> and <math>b=-3</math> give the triple root <math>z=1</math> and the single root <math>z=-3</math>,
:*<math>a=8</math> and <math>b=-3</math> give the triple root <math>z=1</math> and the single root <math>z=-3</math>,
-
:*<math>a=10</math> and <math>b=-3</math> give the triple root <math>z=-1</math> and the single root <math>z=3</math>.
+
:*<math>a=-8</math> and <math>b=-3</math> give the triple root <math>z=-1</math> and the single root <math>z=3</math>.

Current revision

A polynomial is said to have a triple root \displaystyle z=c if the equation contains the factor \displaystyle (z-c)^3.

For our equation, this means that the left-hand side can be factorized as

\displaystyle z^4-6z^2+az+b = (z-c)^3(z-d)

according to the factor theorem, where \displaystyle z=c is the triple root and \displaystyle z=d is the equation's fourth root (according to the fundamental theorem of algebra, a fourth-order equation always has four roots, taking into account multiplicity).

We will now try to determine \displaystyle a, \displaystyle b, \displaystyle c and \displaystyle d so that both sides in the factorization above agree.

If we expand the right-hand side above, we get

\displaystyle \begin{align}

(z-c)^3(z-d) &= (z-c)^2(z-c)(z-d)\\[5pt] &= (z^2-2cz+c^2)(z-c)(z-d)\\[5pt] &= (z^3-3cz^2+3c^2z-c^3)(z-d)\\[5pt] &= z^4-(3c+d)z^3+3c(c+d)z^2-c^2(c+3d)z+c^3d \end{align}

and this means that we must have

\displaystyle z^4-6z^2+az+b = z^4-(3c+d)z^3+3c(c+d)z^2-c^2(c+3d)z+c^3d\,\textrm{.}

Because two polynomials are equal if an only if their coefficients are equal, this gives

\displaystyle \left\{\begin{align}

3c+d &= 0\,,\\[5pt] 3c(c+d) &= -6\,,\\[5pt] -c^2(c+3d) &= a\,,\\[5pt] c^3d &= b\,\textrm{.} \end{align}\right.

From the first equation, we obtain \displaystyle d=-3c and substituting this into the second equation gives us an equation for \displaystyle c,

\displaystyle \begin{align}

3c(c-3c) &= -6\,,\\[5pt] -6c^2 &= -6\,, \end{align}

i.e. \displaystyle c=-1 or \displaystyle c=1. The relation \displaystyle d=-3c gives that the corresponding values for \displaystyle d are \displaystyle d=3 and \displaystyle d=-3. The two last equations give us the corresponding values for \displaystyle a and \displaystyle b,


\displaystyle \begin{align} c=1,\ d=-3:\quad a &= -1^2\cdot (1+3\cdot (-3)) = 8\,,\\[5pt] b &= 1^3\cdot (-3) = -3\,,\\[10pt] c=-1,\ d=3:\quad a &= -(-1)^2\cdot (-1+3\cdot 3) = -8\,,\\[5pt] b &= (-1)^3\cdot 3 = -3\,\textrm{.} \end{align}


Therefore, there are two different answers,

  • \displaystyle a=8 and \displaystyle b=-3 give the triple root \displaystyle z=1 and the single root \displaystyle z=-3,
  • \displaystyle a=-8 and \displaystyle b=-3 give the triple root \displaystyle z=-1 and the single root \displaystyle z=3.