Solution 3.4:5
From Förberedande kurs i matematik 2
m |
(bug fix) |
||
Line 17: | Line 17: | ||
&= (z^2-2cz+c^2)(z-c)(z-d)\\[5pt] | &= (z^2-2cz+c^2)(z-c)(z-d)\\[5pt] | ||
&= (z^3-3cz^2+3c^2z-c^3)(z-d)\\[5pt] | &= (z^3-3cz^2+3c^2z-c^3)(z-d)\\[5pt] | ||
- | &= z^4-(3c+d)z^3+3c(c+d)z^2-c^2(c | + | &= z^4-(3c+d)z^3+3c(c+d)z^2-c^2(c+3d)z+c^3d |
\end{align}</math>}} | \end{align}</math>}} | ||
and this means that we must have | and this means that we must have | ||
- | {{Displayed math||<math>z^4-6z^2+az+b = z^4-(3c+d)z^3+3c(c+d)z^2-c^2(c | + | {{Displayed math||<math>z^4-6z^2+az+b = z^4-(3c+d)z^3+3c(c+d)z^2-c^2(c+3d)z+c^3d\,\textrm{.}</math>}} |
Because two polynomials are equal if an only if their coefficients are equal, this gives | Because two polynomials are equal if an only if their coefficients are equal, this gives | ||
Line 29: | Line 29: | ||
3c+d &= 0\,,\\[5pt] | 3c+d &= 0\,,\\[5pt] | ||
3c(c+d) &= -6\,,\\[5pt] | 3c(c+d) &= -6\,,\\[5pt] | ||
- | -c^2(c | + | -c^2(c+3d) &= a\,,\\[5pt] |
c^3d &= b\,\textrm{.} | c^3d &= b\,\textrm{.} | ||
\end{align}\right.</math>}} | \end{align}\right.</math>}} | ||
Line 45: | Line 45: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | c=1,\ d=-3:\quad a &= -1^2\cdot (1 | + | c=1,\ d=-3:\quad a &= -1^2\cdot (1+3\cdot (-3)) = 8\,,\\[5pt] |
b &= 1^3\cdot (-3) = -3\,,\\[10pt] | b &= 1^3\cdot (-3) = -3\,,\\[10pt] | ||
- | c=-1,\ d=3:\quad a &= -(-1)^2\cdot (-1 | + | c=-1,\ d=3:\quad a &= -(-1)^2\cdot (-1+3\cdot 3) = -8\,,\\[5pt] |
b &= (-1)^3\cdot 3 = -3\,\textrm{.} | b &= (-1)^3\cdot 3 = -3\,\textrm{.} | ||
\end{align}</math> | \end{align}</math> | ||
Line 56: | Line 56: | ||
:*<math>a=8</math> and <math>b=-3</math> give the triple root <math>z=1</math> and the single root <math>z=-3</math>, | :*<math>a=8</math> and <math>b=-3</math> give the triple root <math>z=1</math> and the single root <math>z=-3</math>, | ||
- | :*<math>a= | + | :*<math>a=-8</math> and <math>b=-3</math> give the triple root <math>z=-1</math> and the single root <math>z=3</math>. |
Current revision
A polynomial is said to have a triple root \displaystyle z=c if the equation contains the factor \displaystyle (z-c)^3.
For our equation, this means that the left-hand side can be factorized as
\displaystyle z^4-6z^2+az+b = (z-c)^3(z-d) |
according to the factor theorem, where \displaystyle z=c is the triple root and \displaystyle z=d is the equation's fourth root (according to the fundamental theorem of algebra, a fourth-order equation always has four roots, taking into account multiplicity).
We will now try to determine \displaystyle a, \displaystyle b, \displaystyle c and \displaystyle d so that both sides in the factorization above agree.
If we expand the right-hand side above, we get
\displaystyle \begin{align}
(z-c)^3(z-d) &= (z-c)^2(z-c)(z-d)\\[5pt] &= (z^2-2cz+c^2)(z-c)(z-d)\\[5pt] &= (z^3-3cz^2+3c^2z-c^3)(z-d)\\[5pt] &= z^4-(3c+d)z^3+3c(c+d)z^2-c^2(c+3d)z+c^3d \end{align} |
and this means that we must have
\displaystyle z^4-6z^2+az+b = z^4-(3c+d)z^3+3c(c+d)z^2-c^2(c+3d)z+c^3d\,\textrm{.} |
Because two polynomials are equal if an only if their coefficients are equal, this gives
\displaystyle \left\{\begin{align}
3c+d &= 0\,,\\[5pt] 3c(c+d) &= -6\,,\\[5pt] -c^2(c+3d) &= a\,,\\[5pt] c^3d &= b\,\textrm{.} \end{align}\right. |
From the first equation, we obtain \displaystyle d=-3c and substituting this into the second equation gives us an equation for \displaystyle c,
\displaystyle \begin{align}
3c(c-3c) &= -6\,,\\[5pt] -6c^2 &= -6\,, \end{align} |
i.e. \displaystyle c=-1 or \displaystyle c=1. The relation \displaystyle d=-3c gives that the corresponding values for \displaystyle d are \displaystyle d=3 and \displaystyle d=-3. The two last equations give us the corresponding values for \displaystyle a and \displaystyle b,
\displaystyle \begin{align}
c=1,\ d=-3:\quad a &= -1^2\cdot (1+3\cdot (-3)) = 8\,,\\[5pt]
b &= 1^3\cdot (-3) = -3\,,\\[10pt]
c=-1,\ d=3:\quad a &= -(-1)^2\cdot (-1+3\cdot 3) = -8\,,\\[5pt]
b &= (-1)^3\cdot 3 = -3\,\textrm{.}
\end{align}
Therefore, there are two different answers,
- \displaystyle a=8 and \displaystyle b=-3 give the triple root \displaystyle z=1 and the single root \displaystyle z=-3,
- \displaystyle a=-8 and \displaystyle b=-3 give the triple root \displaystyle z=-1 and the single root \displaystyle z=3.