3.4 Exercises

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
Current revision (08:22, 17 September 2008) (edit) (undo)
m (Robot: Automated text replacement (-{{Vald flik +{{Selected tab))
 
(12 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[3.4 Komplexa polynom|Teori]]}}
+
{{Not selected tab|[[3.4 Complex polynomials|Theory]]}}
-
{{Mall:Vald flik|[[3.4 Övningar|Övningar]]}}
+
{{Selected tab|[[3.4 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 3.4:1===
+
===Exercise 3.4:1===
<div class="ovning">
<div class="ovning">
-
Utför följande polynomdivisioner (alla går inte jämnt ut)
+
Carry out the following divisions (not all are exact, i.e. have no remainder)
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 23: Line 23:
|width="33%"| <math>\displaystyle \frac{x^3+2x^2+1}{x^2+3x+1}</math>
|width="33%"| <math>\displaystyle \frac{x^3+2x^2+1}{x^2+3x+1}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 3.4:1|Lösning a|Lösning 3.4:1a|Lösning b|Lösning 3.4:1b|Lösning c|Lösning 3.4:1c|Lösning d|Lösning 3.4:1d|Lösning e|Lösning 3.4:1e}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.4:1|Solution a|Solution 3.4:1a|Solution b|Solution 3.4:1b|Solution c|Solution 3.4:1c|Solution d|Solution 3.4:1d|Solution e|Solution 3.4:1e}}
-
===Övning 3.4:2===
+
===Exercise 3.4:2===
<div class="ovning">
<div class="ovning">
-
Ekvationen <math>\,z^3-3z^2+4z-2=0\,</math> har roten <math>\,z=1\,</math>. Bestäm övriga rötter.
+
The equation <math>\,z^3-3z^2+4z-2=0\,</math> has the root <math>\,z=1\,</math>. Determine the other roots.
-
</div>{{#NAVCONTENT:Svar|Svar 3.4:2|Lösning |Lösning 3.4:2}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.4:2|Solution|Solution 3.4:2}}
-
===Övning 3.4:3===
+
===Exercise 3.4:3===
<div class="ovning">
<div class="ovning">
-
Ekvationen <math>\,z^4+2z^3+6z^2 +8z +8 =0\,</math> har rötterna <math>\,z=2i\,</math> och <math>\,z=-1-i\,</math>. Lös ekvationen.
+
The equation <math>\,z^4+2z^3+6z^2 +8z +8 =0\,</math> has the roots <math>\,z=2i\,</math> and <math>\,z=-1-i\,</math>. Solve the equation.
-
</div>{{#NAVCONTENT:Svar|Svar 3.4:3|Lösning |Lösning 3.4:3}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.4:3|Solution|Solution 3.4:3}}
-
===Övning 3.4:4===
+
===Exercise 3.4:4===
<div class="ovning">
<div class="ovning">
-
Bestäm två reella tal <math>\,a\,</math> och <math>\,b\,</math> så att ekvationen <math>\ z^3+az+b=0\ </math> har roten <math>\,z=1-2i\,</math>. Lös sedan ekvationen.
+
Determine two real numbers <math>\,a\,</math> and <math>\,b\,</math>, such that the equation <math>\ z^3+az+b=0\ </math> has the root <math>\,z=1-2i\,</math>. Then solve the equation.
-
</div>{{#NAVCONTENT:Svar|Svar 3.4:4|Lösning |Lösning 3.4:4}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.4:4|Solution|Solution 3.4:4}}
 +
 
 +
===Exercise 3.4:5===
 +
<div class="ovning">
 +
Determine <math>\,a\,</math> and <math>\,b\,</math> so that the equation <math>\ z^4-6z^2+az+b=0\ </math> has a triple root. Then solve the equation.
 +
</div>{{#NAVCONTENT:Answer|Answer 3.4:5|Solution|Solution 3.4:5}}
 +
 
 +
===Exercise 3.4:6===
 +
<div class="ovning">
 +
The equation <math>\ z^4+3z^3+z^2+18z-30=0\ </math> has a pure imaginary root. Determine all the roots.
 +
</div>{{#NAVCONTENT:Answer|Answer 3.4:6|Solution|Solution 3.4:6}}
 +
 
 +
===Exercise 3.4:7===
 +
<div class="ovning">
 +
Determine the polynomial which has the following zeros
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="50%"|<math>1\,</math>, <math>\,2\,</math> and <math>\,4</math>
 +
|b)
 +
|width="50%"| <math>-1+ i\,</math> and <math>\,-1-i</math>
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 3.4:7|Solution a|Solution 3.4:7a|Solution b|Solution 3.4:7b}}

Current revision

       Theory          Exercises      

Exercise 3.4:1

Carry out the following divisions (not all are exact, i.e. have no remainder)

a) \displaystyle \displaystyle\frac{x^2-1}{x-1} b) \displaystyle \displaystyle\frac{x^2}{x+1} c) \displaystyle \displaystyle \frac{x^3+a^3}{x+a}
d) \displaystyle \displaystyle\frac{x^3 +x+2}{x+1} e) \displaystyle \displaystyle \frac{x^3+2x^2+1}{x^2+3x+1}

Exercise 3.4:2

The equation \displaystyle \,z^3-3z^2+4z-2=0\, has the root \displaystyle \,z=1\,. Determine the other roots.

Exercise 3.4:3

The equation \displaystyle \,z^4+2z^3+6z^2 +8z +8 =0\, has the roots \displaystyle \,z=2i\, and \displaystyle \,z=-1-i\,. Solve the equation.

Exercise 3.4:4

Determine two real numbers \displaystyle \,a\, and \displaystyle \,b\,, such that the equation \displaystyle \ z^3+az+b=0\ has the root \displaystyle \,z=1-2i\,. Then solve the equation.

Exercise 3.4:5

Determine \displaystyle \,a\, and \displaystyle \,b\, so that the equation \displaystyle \ z^4-6z^2+az+b=0\ has a triple root. Then solve the equation.

Exercise 3.4:6

The equation \displaystyle \ z^4+3z^3+z^2+18z-30=0\ has a pure imaginary root. Determine all the roots.

Exercise 3.4:7

Determine the polynomial which has the following zeros

a) \displaystyle 1\,, \displaystyle \,2\, and \displaystyle \,4 b) \displaystyle -1+ i\, and \displaystyle \,-1-i