Solution 3.3:4b

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:3_3_4b.gif </center> {{NAVCONTENT_STOP}})
Current revision (14:30, 30 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
Typically, one solves a second-degree by completing the square, followed by taking the square root.
-
<center> [[Bild:3_3_4b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
If we complete the square of the left-hand side, we get
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
(z-2)^2-2^2+5&=0,\\[5pt]
 +
(z-2)^2+1&=0.
 +
\end{align}</math>}}
 +
 
 +
Taking the square root then gives that the equation has roots <math>z-2=\pm i</math>, i.e. <math>z=2+i</math> and <math>z=2-i</math>.
 +
 
 +
If we want to be sure that we have found the correct solutions, we can substitute each solution into the equation and see whether the equation is satisfied.
 +
 
 +
<math>\begin{align}
 +
z=2+i:\qquad z^2-4z+5
 +
&= (2+i)^2-4(2+i)+5\\[5pt]
 +
&= 2^2+4i+i^2-8-4i+5\\[5pt]
 +
&= 4+4i-1-8-4i+5\\[5pt]
 +
&=0\,,\\[10pt]
 +
z={}\rlap{2-i:}\phantom{2+i:}{}\qquad z^2-4z+5
 +
&= (2-i)^2-4(2-i)+5\\[5pt]
 +
&= 2^2-4i+i^2-8+4i+5\\[5pt]
 +
&= 4-4i-1-8+4i+5\\[5pt]
 +
&= 0\,\textrm{.}
 +
\end{align}</math>

Current revision

Typically, one solves a second-degree by completing the square, followed by taking the square root.

If we complete the square of the left-hand side, we get

\displaystyle \begin{align}

(z-2)^2-2^2+5&=0,\\[5pt] (z-2)^2+1&=0. \end{align}

Taking the square root then gives that the equation has roots \displaystyle z-2=\pm i, i.e. \displaystyle z=2+i and \displaystyle z=2-i.

If we want to be sure that we have found the correct solutions, we can substitute each solution into the equation and see whether the equation is satisfied.

\displaystyle \begin{align} z=2+i:\qquad z^2-4z+5 &= (2+i)^2-4(2+i)+5\\[5pt] &= 2^2+4i+i^2-8-4i+5\\[5pt] &= 4+4i-1-8-4i+5\\[5pt] &=0\,,\\[10pt] z={}\rlap{2-i:}\phantom{2+i:}{}\qquad z^2-4z+5 &= (2-i)^2-4(2-i)+5\\[5pt] &= 2^2-4i+i^2-8+4i+5\\[5pt] &= 4-4i-1-8+4i+5\\[5pt] &= 0\,\textrm{.} \end{align}