Solution 2.2:3c
From Förberedande kurs i matematik 2
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_2_3c.gif </center> {{NAVCONTENT_STOP}}) |
m |
||
(3 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | It is simpler to investigate the integral if we write it as |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\int \ln x\cdot\frac{1}{x}\,dx\,,</math>}} |
+ | |||
+ | The derivative of <math>\ln x</math> is <math>1/x</math>, so if we choose <math>u = \ln x</math>, the integral can be expressed as | ||
+ | |||
+ | {{Displayed math||<math>\int u\cdot u'\,dx\,\textrm{.}</math>}} | ||
+ | |||
+ | Thus, it seems that <math>u=\ln x</math> is a useful substitution, | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \int \ln x\cdot\frac{1}{x}\,dx | ||
+ | &= \left\{\begin{align} | ||
+ | u &= \ln x\\[5pt] | ||
+ | du &= (\ln x)'\,dx = (1/x)\,dx | ||
+ | \end{align}\right\}\\[5pt] | ||
+ | &= \int u\,du\\[5pt] | ||
+ | &= \frac{1}{2}u^{2} + C\\[5pt] | ||
+ | &= \frac{1}{2}(\ln x)^2 + C\,\textrm{.} | ||
+ | \end{align}</math>}} |
Current revision
It is simpler to investigate the integral if we write it as
\displaystyle \int \ln x\cdot\frac{1}{x}\,dx\,, |
The derivative of \displaystyle \ln x is \displaystyle 1/x, so if we choose \displaystyle u = \ln x, the integral can be expressed as
\displaystyle \int u\cdot u'\,dx\,\textrm{.} |
Thus, it seems that \displaystyle u=\ln x is a useful substitution,
\displaystyle \begin{align}
\int \ln x\cdot\frac{1}{x}\,dx &= \left\{\begin{align} u &= \ln x\\[5pt] du &= (\ln x)'\,dx = (1/x)\,dx \end{align}\right\}\\[5pt] &= \int u\,du\\[5pt] &= \frac{1}{2}u^{2} + C\\[5pt] &= \frac{1}{2}(\ln x)^2 + C\,\textrm{.} \end{align} |