Solution 2.2:3c

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_2_3c.gif </center> {{NAVCONTENT_STOP}})
Current revision (14:23, 28 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
It is simpler to investigate the integral if we write it as
-
<center> [[Bild:2_2_3c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\int \ln x\cdot\frac{1}{x}\,dx\,,</math>}}
 +
 
 +
The derivative of <math>\ln x</math> is <math>1/x</math>, so if we choose <math>u = \ln x</math>, the integral can be expressed as
 +
 
 +
{{Displayed math||<math>\int u\cdot u'\,dx\,\textrm{.}</math>}}
 +
 
 +
Thus, it seems that <math>u=\ln x</math> is a useful substitution,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\int \ln x\cdot\frac{1}{x}\,dx
 +
&= \left\{\begin{align}
 +
u &= \ln x\\[5pt]
 +
du &= (\ln x)'\,dx = (1/x)\,dx
 +
\end{align}\right\}\\[5pt]
 +
&= \int u\,du\\[5pt]
 +
&= \frac{1}{2}u^{2} + C\\[5pt]
 +
&= \frac{1}{2}(\ln x)^2 + C\,\textrm{.}
 +
\end{align}</math>}}

Current revision

It is simpler to investigate the integral if we write it as

\displaystyle \int \ln x\cdot\frac{1}{x}\,dx\,,

The derivative of \displaystyle \ln x is \displaystyle 1/x, so if we choose \displaystyle u = \ln x, the integral can be expressed as

\displaystyle \int u\cdot u'\,dx\,\textrm{.}

Thus, it seems that \displaystyle u=\ln x is a useful substitution,

\displaystyle \begin{align}

\int \ln x\cdot\frac{1}{x}\,dx &= \left\{\begin{align} u &= \ln x\\[5pt] du &= (\ln x)'\,dx = (1/x)\,dx \end{align}\right\}\\[5pt] &= \int u\,du\\[5pt] &= \frac{1}{2}u^{2} + C\\[5pt] &= \frac{1}{2}(\ln x)^2 + C\,\textrm{.} \end{align}