2.2 Exercises

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
Current revision (08:21, 17 September 2008) (edit) (undo)
m (Robot: Automated text replacement (-{{Vald flik +{{Selected tab))
 
(10 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[2.2 Variabelsubstitution|Teori]]}}
+
{{Not selected tab|[[2.2 Substitution|Theory]]}}
-
{{Mall:Vald flik|[[2.2 Övningar|Övningar]]}}
+
{{Selected tab|[[2.2 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 2.2:1===
+
===Exercise 2.2:1===
<div class="ovning">
<div class="ovning">
-
Beräkna integralerna
+
Calculate the integrals
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%"|<math>\displaystyle \int_{1}^{2} \displaystyle\frac{dx}{(3x-1)^4}\quad</math> genom att använda substitution <math>u=3x-1</math>
+
|width="100%"|<math>\displaystyle \int_{1}^{2} \displaystyle\frac{dx}{(3x-1)^4}\quad</math> by using the substitution <math>u=3x-1</math>,
|-
|-
|b)
|b)
-
|width="100%"| <math>\displaystyle \int (x^2+3)^5x \, dx\quad</math> genom att använda substitution <math>u=x^2+3</math>
+
|width="100%"| <math>\displaystyle \int (x^2+3)^5x \, dx\quad</math> by using the substitution <math>u=x^2+3</math>,
|-
|-
|c)
|c)
-
|width="100%"| <math>\displaystyle \int x^2 e^{x^3} \, dx\quad</math> genom att använda substitution <math>u=x^3</math>
+
|width="100%"| <math>\displaystyle \int x^2 e^{x^3} \, dx\quad</math> by using the substitution <math>u=x^3</math>.
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.2:1|Lösning a|Lösning 2.2:1a|Lösning b|Lösning 2.2:1b|Lösning c|Lösning 2.2:1c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:1|Solution a|Solution 2.2:1a|Solution b|Solution 2.2:1b|Solution c|Solution 2.2:1c}}
-
===Övning 2.2:2===
+
===Exercise 2.2:2===
<div class="ovning">
<div class="ovning">
-
Beräkna integralerna
+
Calculate the integrals
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 36: Line 36:
|width="50%"| <math>\displaystyle\int_{0}^{1} \sqrt[\scriptstyle3]{1 - x}\, dx</math>
|width="50%"| <math>\displaystyle\int_{0}^{1} \sqrt[\scriptstyle3]{1 - x}\, dx</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.2:2|Lösning a|Lösning 2.2:2a|Lösning b|Lösning 2.2:2b|Lösning c|Lösning 2.2:2c|Lösning d|Lösning 2.2:2d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:2|Solution a|Solution 2.2:2a|Solution b|Solution 2.2:2b|Solution c|Solution 2.2:2c|Solution d|Solution 2.2:2d}}
-
===Övning 2.2:3===
+
===Exercise 2.2:3===
<div class="ovning">
<div class="ovning">
-
Beräkna integralerna
+
Calculate the integrals
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 57: Line 57:
|width="50%"| <math>\displaystyle\int \displaystyle\frac{\sin \sqrt{x}}{\sqrt{x}}\, dx</math>
|width="50%"| <math>\displaystyle\int \displaystyle\frac{\sin \sqrt{x}}{\sqrt{x}}\, dx</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.2:3|Lösning a|Lösning 2.2:3a|Lösning b|Lösning 2.2:3b|Lösning c|Lösning 2.2:3c|Lösning d|Lösning 2.2:3d|Lösning e|Lösning 2.2:3e|Lösning f|Lösning 2.2:3f}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:3|Solution a|Solution 2.2:3a|Solution b|Solution 2.2:3b|Solution c|Solution 2.2:3c|Solution d|Solution 2.2:3d|Solution e|Solution 2.2:3e|Solution f|Solution 2.2:3f}}
-
===Övning 2.2:4===
+
===Exercise 2.2:4===
<div class="ovning">
<div class="ovning">
-
Använd formeln
+
Use the formula
<center> <math>\int \frac{dx}{x^2+1} = \arctan x + C</math> </center>
<center> <math>\int \frac{dx}{x^2+1} = \arctan x + C</math> </center>
-
för att beräkna integralerna
+
to calculate the integrals
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 75: Line 75:
|width="50%"| <math>\displaystyle\int \frac{x^2}{x^2 +1}\, dx</math>
|width="50%"| <math>\displaystyle\int \frac{x^2}{x^2 +1}\, dx</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.2:4|Lösning a|Lösning 2.2:4a|Lösning b|Lösning 2.2:4b|Lösning c|Lösning 2.2:4c|Lösning d|Lösning 2.2:4d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:4|Solution a|Solution 2.2:4a|Solution b|Solution 2.2:4b|Solution c|Solution 2.2:4c|Solution d|Solution 2.2:4d}}

Current revision

       Theory          Exercises      

Exercise 2.2:1

Calculate the integrals

a) \displaystyle \displaystyle \int_{1}^{2} \displaystyle\frac{dx}{(3x-1)^4}\quad by using the substitution \displaystyle u=3x-1,
b) \displaystyle \displaystyle \int (x^2+3)^5x \, dx\quad by using the substitution \displaystyle u=x^2+3,
c) \displaystyle \displaystyle \int x^2 e^{x^3} \, dx\quad by using the substitution \displaystyle u=x^3.

Exercise 2.2:2

Calculate the integrals

a) \displaystyle \displaystyle\int_{0}^{\pi} \cos 5x\, dx b) \displaystyle \displaystyle\int_{0}^{1/2} e^{2x+3}\, dx
c) \displaystyle \displaystyle\int_{0}^{5} \sqrt{3x + 1} \, dx d) \displaystyle \displaystyle\int_{0}^{1} \sqrt[\scriptstyle3]{1 - x}\, dx

Exercise 2.2:3

Calculate the integrals

a) \displaystyle \displaystyle\int 2x \sin x^2\, dx b) \displaystyle \displaystyle\int \sin x \cos x\, dx
c) \displaystyle \displaystyle\int \displaystyle\frac{\ln x}{x}\, dx d) \displaystyle \displaystyle\int \displaystyle\frac{x+1}{x^2+2x+2}\, dx
e) \displaystyle \displaystyle\int \displaystyle\frac{3x}{x^2+1}\, dx f) \displaystyle \displaystyle\int \displaystyle\frac{\sin \sqrt{x}}{\sqrt{x}}\, dx

Exercise 2.2:4

Use the formula

\displaystyle \int \frac{dx}{x^2+1} = \arctan x + C

to calculate the integrals

a) \displaystyle \displaystyle\int \frac{dx}{x^2+4} b) \displaystyle \displaystyle\int \frac{dx}{(x-1)^2+3}
c) \displaystyle \displaystyle\int \frac{dx}{x^2+4x+8} d) \displaystyle \displaystyle\int \frac{x^2}{x^2 +1}\, dx