Solution 1.2:2c
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Lösning 1.2:2c moved to Solution 1.2:2c: Robot: moved page) |
m |
||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | When we see this expression, we should think "square root of something", |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\sqrt{\bbox[#FFEEAA;,1.5pt]{\phantom{\cos x}}}\,\textrm{,}</math>}} |
+ | |||
+ | and in order to differentiate it, we should first differentiate the outer function , "the square root of", with respect to its argument and, after that, multiply by the derivative of the inner functional expression <math>\bbox[#FFEEAA;,1.5pt]{\phantom{\cos x}} = \cos x</math>, | ||
+ | |||
+ | {{Displayed math||<math>\frac{d}{dx}\,\sqrt{\bbox[#FFEEAA;,1.5pt]{\cos x}} = \frac{1}{2\sqrt{\bbox[#FFEEAA;,1.5pt]{\cos x}}}\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\cos x}\bigr)'\,,</math>}} | ||
+ | |||
+ | where we have used the differentiation rule | ||
+ | |||
+ | {{Displayed math||<math>\frac{d}{dx}\,\sqrt{x} = \frac{d}{dx}\,x^{1/2} = \tfrac{1}{2}x^{1/2-1} = \tfrac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}\,\textrm{.}</math>}} | ||
+ | |||
+ | Thus, we obtain | ||
+ | |||
+ | {{Displayed math||<math>\frac{d}{dx}\,\sqrt{\cos x} = \frac{1}{2\sqrt{\cos x}}\cdot (-\sin x) = -\frac{\sin x}{2\sqrt{\cos x}}\,\textrm{.}</math>}} |
Current revision
When we see this expression, we should think "square root of something",
\displaystyle \sqrt{\bbox[#FFEEAA;,1.5pt]{\phantom{\cos x}}}\,\textrm{,} |
and in order to differentiate it, we should first differentiate the outer function , "the square root of", with respect to its argument and, after that, multiply by the derivative of the inner functional expression \displaystyle \bbox[#FFEEAA;,1.5pt]{\phantom{\cos x}} = \cos x,
\displaystyle \frac{d}{dx}\,\sqrt{\bbox[#FFEEAA;,1.5pt]{\cos x}} = \frac{1}{2\sqrt{\bbox[#FFEEAA;,1.5pt]{\cos x}}}\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\cos x}\bigr)'\,, |
where we have used the differentiation rule
\displaystyle \frac{d}{dx}\,\sqrt{x} = \frac{d}{dx}\,x^{1/2} = \tfrac{1}{2}x^{1/2-1} = \tfrac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}\,\textrm{.} |
Thus, we obtain
\displaystyle \frac{d}{dx}\,\sqrt{\cos x} = \frac{1}{2\sqrt{\cos x}}\cdot (-\sin x) = -\frac{\sin x}{2\sqrt{\cos x}}\,\textrm{.} |