Solution 1.1:2f
From Förberedande kurs i matematik 2
m (Lösning 1.1:2f moved to Solution 1.1:2f: Robot: moved page) |
m |
||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | We can rewrite the function using a trigonometric addition formula, |
- | < | + | |
- | {{ | + | {{Displayed math||<math>f(x) = \cos\Bigl(x+\frac{\pi}{3}\Bigr) = \cos x\cdot\cos \frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3}\,\textrm{.}</math>}} |
+ | |||
+ | If we now differentiate this expression, <math>\cos (\pi/3)</math> and <math>\sin (\pi/3)</math> are constants and we obtain | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | f^{\,\prime}(x) | ||
+ | &= \frac{d}{dx}\,\Bigl(\cos x\cdot\cos\frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3} \Bigr)\\[5pt] | ||
+ | &= \cos\frac{\pi}{3}\cdot\frac{d}{dx}\,\cos x - \sin\frac{\pi}{3}\cdot\frac{d}{dx}\,\sin x\\[5pt] | ||
+ | &= \cos\frac{\pi}{3}\cdot (-\sin x) - \sin\frac{\pi}{3}\cdot\cos x\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | If we then use the addition formula in reverse, this gives | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | f^{\,\prime}(x) | ||
+ | &= -\Bigl(\sin x\cdot\cos\frac{\pi}{3} + \cos x\cdot\sin\frac{\pi}{3}\Bigr)\\[5pt] | ||
+ | &= -\sin\Bigl(x+\frac{\pi}{3}\Bigr)\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | |||
+ | Note: In the next section, we will go through differentiation rules which make it possible to differentiate the expression directly without rewriting in this way. |
Current revision
We can rewrite the function using a trigonometric addition formula,
\displaystyle f(x) = \cos\Bigl(x+\frac{\pi}{3}\Bigr) = \cos x\cdot\cos \frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3}\,\textrm{.} |
If we now differentiate this expression, \displaystyle \cos (\pi/3) and \displaystyle \sin (\pi/3) are constants and we obtain
\displaystyle \begin{align}
f^{\,\prime}(x) &= \frac{d}{dx}\,\Bigl(\cos x\cdot\cos\frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3} \Bigr)\\[5pt] &= \cos\frac{\pi}{3}\cdot\frac{d}{dx}\,\cos x - \sin\frac{\pi}{3}\cdot\frac{d}{dx}\,\sin x\\[5pt] &= \cos\frac{\pi}{3}\cdot (-\sin x) - \sin\frac{\pi}{3}\cdot\cos x\,\textrm{.} \end{align} |
If we then use the addition formula in reverse, this gives
\displaystyle \begin{align}
f^{\,\prime}(x) &= -\Bigl(\sin x\cdot\cos\frac{\pi}{3} + \cos x\cdot\sin\frac{\pi}{3}\Bigr)\\[5pt] &= -\sin\Bigl(x+\frac{\pi}{3}\Bigr)\,\textrm{.} \end{align} |
Note: In the next section, we will go through differentiation rules which make it possible to differentiate the expression directly without rewriting in this way.