Solution 1.2:1e

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:1_2_1e.gif </center> {{NAVCONTENT_STOP}})
Current revision (14:14, 14 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
The quotient rule gives
-
<center> [[Bild:1_2_1e.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
 +
\Bigl(\frac{x}{\ln x}\Bigr)'
 +
&= \frac{(x)'\cdot \ln x - x\cdot (\ln x)'}{(\ln x)^2}\\[5pt]
 +
&= \frac{1\cdot\ln x - x\cdot\dfrac{1}{x}}{(\ln x)^2}\\[5pt]
 +
&= \frac{\ln x-1}{(\ln x)^2}\\[5pt]
 +
&= \frac{1}{\ln x} - \frac{1}{(\ln x)^2}\,\textrm{.}
 +
\end{align}</math>}}

Current revision

The quotient rule gives

\displaystyle \begin{align}

\Bigl(\frac{x}{\ln x}\Bigr)' &= \frac{(x)'\cdot \ln x - x\cdot (\ln x)'}{(\ln x)^2}\\[5pt] &= \frac{1\cdot\ln x - x\cdot\dfrac{1}{x}}{(\ln x)^2}\\[5pt] &= \frac{\ln x-1}{(\ln x)^2}\\[5pt] &= \frac{1}{\ln x} - \frac{1}{(\ln x)^2}\,\textrm{.} \end{align}