1.2 Exercises

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
Current revision (08:20, 17 September 2008) (edit) (undo)
m (Robot: Automated text replacement (-{{Vald flik +{{Selected tab))
 
(11 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[1.2 Deriveringsregler|Teori]]}}
+
{{Not selected tab|[[1.2 Rules of differentiation|Theory]]}}
-
{{Mall:Vald flik|[[1.2 Övningar|Övningar]]}}
+
{{Selected tab|[[1.2 Exercises|Examples]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 1.2:1===
+
===Example 1.2:1===
<div class="ovning">
<div class="ovning">
-
Beräkna derivatan av följande funktioner och förenkla svaret så långt som möjligt
+
Calculate the derivative of the following functions and write the answer in simplest possible form:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 25: Line 25:
|width="33%"| <math>\displaystyle\frac{x \ln x}{\sin x}</math>
|width="33%"| <math>\displaystyle\frac{x \ln x}{\sin x}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 1.2:1|Lösning a|Lösning 1.2:1a|Lösning b|Lösning 1.2:1b|Lösning c|Lösning 1.2:1c|Lösning d|Lösning 1.2:1d|Lösning e|Lösning 1.2:1e|Lösning f|Lösning 1.2:1f}}
+
</div>{{#NAVCONTENT:Answer|Answer 1.2:1|Solution a|Solution 1.2:1a|Solution b|Solution 1.2:1b|Solution c|Solution 1.2:1c|Solution d|Solution 1.2:1d|Solution e|Solution 1.2:1e|Solution f|Solution 1.2:1f}}
-
===Övning 1.2:2===
+
===Example 1.2:2===
<div class="ovning">
<div class="ovning">
-
Beräkna derivatan av följande funktioner och förenkla svaret så långt som möjligt
+
Calculate the derivative of the following functions and write the answer in simplest possible form:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 45: Line 45:
|width="33%"| <math>\cos \sqrt{1-x}</math>
|width="33%"| <math>\cos \sqrt{1-x}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 1.2:2|Lösning a|Lösning 1.2:2a|Lösning b|Lösning 1.2:2b|Lösning c|Lösning 1.2:2c|Lösning d|Lösning 1.2:2d|Lösning e|Lösning 1.2:2e|Lösning f|Lösning 1.2:2f}}
+
</div>{{#NAVCONTENT:Answer|Answer 1.2:2|Solution a|Solution 1.2:2a|Solution b|Solution 1.2:2b|Solution c|Solution 1.2:2c|Solution d|Solution 1.2:2d|Solution e|Solution 1.2:2e|Solution f|Solution 1.2:2f}}
-
===Övning 1.2:3===
+
===Example 1.2:3===
<div class="ovning">
<div class="ovning">
-
Beräkna derivatan av följande funktioner och förenkla svaret så långt som möjligt
+
Calculate the derivative of the following functions and write the answer in simplest possible form:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="33%"| <math> \ln (\sqrt{x} + \sqrt{x+1})</math>
+
|width="33%"| <math> \ln (\sqrt{x} + \sqrt{x+1}\,)</math>
|b)
|b)
|width="33%"| <math>\sqrt{\displaystyle \frac{x+1}{x-1}}</math>
|width="33%"| <math>\sqrt{\displaystyle \frac{x+1}{x-1}}</math>
Line 65: Line 65:
|width="33%"| <math>x^{\tan x}</math>
|width="33%"| <math>x^{\tan x}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 1.2:3|Lösning a|Lösning 1.2:3a|Lösning b|Lösning 1.2:3b|Lösning c|Lösning 1.2:3c|Lösning d|Lösning 1.2:3d|Lösning e|Lösning 1.2:3e|Lösning f|Lösning 1.2:3f}}
+
</div>{{#NAVCONTENT:Answer|Answer 1.2:3|Solution a|Solution 1.2:3a|Solution b|Solution 1.2:3b|Solution c|Solution 1.2:3c|Solution d|Solution 1.2:3d|Solution e|Solution 1.2:3e|Solution f|Solution 1.2:3f}}
 +
 
 +
===Example 1.2:4===
 +
<div class="ovning">
 +
Calculate the second derivative of the following functions and write the answer in simplest possible form:
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="50%"| <math>\displaystyle\frac{x}{\sqrt{1-x^2}}</math>
 +
|b)
 +
|width="50%"| <math>x ( \sin \ln x +\cos \ln x )</math>
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 1.2:4|Solution a|Solution 1.2:4a|Solution b|Solution 1.2:4b}}

Current revision

       Theory          Examples      

Example 1.2:1

Calculate the derivative of the following functions and write the answer in simplest possible form:

a) \displaystyle \cos x \cdot \sin x b) \displaystyle x^2\ln x c) \displaystyle \displaystyle\frac{x^2+1}{x+1}
d) \displaystyle \displaystyle\frac{\sin x}{x} e) \displaystyle \displaystyle\frac{x}{\ln x} f) \displaystyle \displaystyle\frac{x \ln x}{\sin x}

Example 1.2:2

Calculate the derivative of the following functions and write the answer in simplest possible form:

a) \displaystyle \sin x^2 b) \displaystyle e^{x^2+x} c) \displaystyle \sqrt{\cos x}
d) \displaystyle \ln \ln x e) \displaystyle x(2x+1)^4 f) \displaystyle \cos \sqrt{1-x}

Example 1.2:3

Calculate the derivative of the following functions and write the answer in simplest possible form:

a) \displaystyle \ln (\sqrt{x} + \sqrt{x+1}\,) b) \displaystyle \sqrt{\displaystyle \frac{x+1}{x-1}} c) \displaystyle \displaystyle\frac{1}{x\sqrt{1-x^2}}
d) \displaystyle \sin \cos \sin x e) \displaystyle e^{\sin x^2} f) \displaystyle x^{\tan x}

Example 1.2:4

Calculate the second derivative of the following functions and write the answer in simplest possible form:

a) \displaystyle \displaystyle\frac{x}{\sqrt{1-x^2}} b) \displaystyle x ( \sin \ln x +\cos \ln x )