Solution 1.2:4b
From Förberedande kurs i matematik 2
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
(2 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | To start with, we determine the first derivative and begin by using the product rule, |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\begin{align} |
- | {{ | + | \frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] |
- | < | + | &= (x)'\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\\[5pt] |
- | {{ | + | &= 1\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\,\textrm{.} |
+ | \end{align}</math>}} | ||
+ | |||
+ | We divide up the differentiation of the second term in sections and use the chain rule, | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | (\sin\ln x + \cos\ln x)' | ||
+ | &= (\sin\ln x)' + (\cos\ln x)'\\[5pt] | ||
+ | &= \cos\ln x\cdot (\ln x)' - \sin\ln x\cdot (\ln x)'\\[5pt] | ||
+ | &= \cos\ln x\cdot\frac{1}{x} - \sin\ln x\cdot\frac{1}{x}\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | This means that | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] | ||
+ | &= \sin \ln x + \cos \ln x + \cos \ln x - \sin \ln x\\[5pt] | ||
+ | &= 2\cos \ln x\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | The second derivative is | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \frac{d}{dx}\,2\cos\ln x | ||
+ | &= -2\sin\ln x\cdot (\ln x)'\\[5pt] | ||
+ | &= -2\sin\ln x\cdot \frac{1}{x}\\[5pt] | ||
+ | &= -\frac{2\sin\ln x}{x}\,\textrm{.} | ||
+ | \end{align}</math>}} |
Current revision
To start with, we determine the first derivative and begin by using the product rule,
\displaystyle \begin{align}
\frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] &= (x)'\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\\[5pt] &= 1\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\,\textrm{.} \end{align} |
We divide up the differentiation of the second term in sections and use the chain rule,
\displaystyle \begin{align}
(\sin\ln x + \cos\ln x)' &= (\sin\ln x)' + (\cos\ln x)'\\[5pt] &= \cos\ln x\cdot (\ln x)' - \sin\ln x\cdot (\ln x)'\\[5pt] &= \cos\ln x\cdot\frac{1}{x} - \sin\ln x\cdot\frac{1}{x}\,\textrm{.} \end{align} |
This means that
\displaystyle \begin{align}
\frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] &= \sin \ln x + \cos \ln x + \cos \ln x - \sin \ln x\\[5pt] &= 2\cos \ln x\,\textrm{.} \end{align} |
The second derivative is
\displaystyle \begin{align}
\frac{d}{dx}\,2\cos\ln x &= -2\sin\ln x\cdot (\ln x)'\\[5pt] &= -2\sin\ln x\cdot \frac{1}{x}\\[5pt] &= -\frac{2\sin\ln x}{x}\,\textrm{.} \end{align} |