Solution 1.2:1f
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
(2 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | In this case, we have a slightly more complicated expression, but if we focus on the expression's outer form, we have essentially "something divided by <math>\sin x</math>". As a first step, we therefore use the quotient rule, |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\Bigl(\frac{x\ln x}{\sin x}\Bigr)' = \frac{(x\ln x)'\cdot \sin x - x\ln x\cdot (\sin x)'}{(\sin x)^2}\,\textrm{.}</math>}} |
- | {{ | + | |
- | < | + | We can, in turn, differentiate the expression <math>x\ln x</math> by using the product rule, |
- | {{ | + | |
+ | {{Displayed math||<math>\begin{align} | ||
+ | (x\ln x)' | ||
+ | &= (x)'\ln x + x\,(\ln x)'\\[5pt] | ||
+ | &= 1\cdot\ln x + x\cdot\frac{1}{x}\\[5pt] | ||
+ | &= \ln x+1\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | All in all, we thus obtain | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \Bigl(\frac{x\ln x}{\sin x}\Bigr)' | ||
+ | &= \frac{(\ln x+1)\cdot\sin x - x\ln x\cdot \cos x}{(\sin x)^2}\\[5pt] | ||
+ | &= \frac{\ln x+1}{\sin x}-\frac{x\ln x\cos x}{\sin^2\!x}\,\textrm{.} | ||
+ | \end{align}</math>}} |
Current revision
In this case, we have a slightly more complicated expression, but if we focus on the expression's outer form, we have essentially "something divided by \displaystyle \sin x". As a first step, we therefore use the quotient rule,
\displaystyle \Bigl(\frac{x\ln x}{\sin x}\Bigr)' = \frac{(x\ln x)'\cdot \sin x - x\ln x\cdot (\sin x)'}{(\sin x)^2}\,\textrm{.} |
We can, in turn, differentiate the expression \displaystyle x\ln x by using the product rule,
\displaystyle \begin{align}
(x\ln x)' &= (x)'\ln x + x\,(\ln x)'\\[5pt] &= 1\cdot\ln x + x\cdot\frac{1}{x}\\[5pt] &= \ln x+1\,\textrm{.} \end{align} |
All in all, we thus obtain
\displaystyle \begin{align}
\Bigl(\frac{x\ln x}{\sin x}\Bigr)' &= \frac{(\ln x+1)\cdot\sin x - x\ln x\cdot \cos x}{(\sin x)^2}\\[5pt] &= \frac{\ln x+1}{\sin x}-\frac{x\ln x\cos x}{\sin^2\!x}\,\textrm{.} \end{align} |