Solution 3.4:5

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (18:11, 1 September 2011) (edit) (undo)
(bug fix)
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
A polynomial is said to have a triple root <math>z=c</math> if the equation contains the factor <math>(z-c)^3</math>.
-
<center> [[Image:3_4_5.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
For our equation, this means that the left-hand side can be factorized as
 +
 
 +
{{Displayed math||<math>z^4-6z^2+az+b = (z-c)^3(z-d)</math>}}
 +
 
 +
according to the factor theorem, where <math>z=c</math> is the triple root and
 +
<math>z=d</math> is the equation's fourth root (according to the fundamental theorem of algebra, a fourth-order equation always has four roots, taking into account multiplicity).
 +
 
 +
We will now try to determine <math>a</math>, <math>b</math>, <math>c</math> and <math>d</math> so that both sides in the factorization above agree.
 +
 
 +
If we expand the right-hand side above, we get
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
(z-c)^3(z-d)
 +
&= (z-c)^2(z-c)(z-d)\\[5pt]
 +
&= (z^2-2cz+c^2)(z-c)(z-d)\\[5pt]
 +
&= (z^3-3cz^2+3c^2z-c^3)(z-d)\\[5pt]
 +
&= z^4-(3c+d)z^3+3c(c+d)z^2-c^2(c+3d)z+c^3d
 +
\end{align}</math>}}
 +
 
 +
and this means that we must have
 +
 
 +
{{Displayed math||<math>z^4-6z^2+az+b = z^4-(3c+d)z^3+3c(c+d)z^2-c^2(c+3d)z+c^3d\,\textrm{.}</math>}}
 +
 
 +
Because two polynomials are equal if an only if their coefficients are equal, this gives
 +
 
 +
{{Displayed math||<math>\left\{\begin{align}
 +
3c+d &= 0\,,\\[5pt]
 +
3c(c+d) &= -6\,,\\[5pt]
 +
-c^2(c+3d) &= a\,,\\[5pt]
 +
c^3d &= b\,\textrm{.}
 +
\end{align}\right.</math>}}
 +
 
 +
From the first equation, we obtain <math>d=-3c</math> and substituting this into the second equation gives us an equation for <math>c</math>,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
3c(c-3c) &= -6\,,\\[5pt]
 +
-6c^2 &= -6\,,
 +
\end{align}</math>}}
 +
 
 +
i.e. <math>c=-1</math> or <math>c=1</math>. The relation <math>d=-3c</math> gives that the corresponding values for <math>d</math> are <math>d=3</math> and <math>d=-3</math>. The two last equations give us the corresponding values for
 +
<math>a</math> and <math>b</math>,
 +
 
 +
 
 +
<math>\begin{align}
 +
c=1,\ d=-3:\quad a &= -1^2\cdot (1+3\cdot (-3)) = 8\,,\\[5pt]
 +
b &= 1^3\cdot (-3) = -3\,,\\[10pt]
 +
c=-1,\ d=3:\quad a &= -(-1)^2\cdot (-1+3\cdot 3) = -8\,,\\[5pt]
 +
b &= (-1)^3\cdot 3 = -3\,\textrm{.}
 +
\end{align}</math>
 +
 
 +
 
 +
Therefore, there are two different answers,
 +
 
 +
:*<math>a=8</math> and <math>b=-3</math> give the triple root <math>z=1</math> and the single root <math>z=-3</math>,
 +
 
 +
:*<math>a=-8</math> and <math>b=-3</math> give the triple root <math>z=-1</math> and the single root <math>z=3</math>.

Current revision

A polynomial is said to have a triple root \displaystyle z=c if the equation contains the factor \displaystyle (z-c)^3.

For our equation, this means that the left-hand side can be factorized as

\displaystyle z^4-6z^2+az+b = (z-c)^3(z-d)

according to the factor theorem, where \displaystyle z=c is the triple root and \displaystyle z=d is the equation's fourth root (according to the fundamental theorem of algebra, a fourth-order equation always has four roots, taking into account multiplicity).

We will now try to determine \displaystyle a, \displaystyle b, \displaystyle c and \displaystyle d so that both sides in the factorization above agree.

If we expand the right-hand side above, we get

\displaystyle \begin{align}

(z-c)^3(z-d) &= (z-c)^2(z-c)(z-d)\\[5pt] &= (z^2-2cz+c^2)(z-c)(z-d)\\[5pt] &= (z^3-3cz^2+3c^2z-c^3)(z-d)\\[5pt] &= z^4-(3c+d)z^3+3c(c+d)z^2-c^2(c+3d)z+c^3d \end{align}

and this means that we must have

\displaystyle z^4-6z^2+az+b = z^4-(3c+d)z^3+3c(c+d)z^2-c^2(c+3d)z+c^3d\,\textrm{.}

Because two polynomials are equal if an only if their coefficients are equal, this gives

\displaystyle \left\{\begin{align}

3c+d &= 0\,,\\[5pt] 3c(c+d) &= -6\,,\\[5pt] -c^2(c+3d) &= a\,,\\[5pt] c^3d &= b\,\textrm{.} \end{align}\right.

From the first equation, we obtain \displaystyle d=-3c and substituting this into the second equation gives us an equation for \displaystyle c,

\displaystyle \begin{align}

3c(c-3c) &= -6\,,\\[5pt] -6c^2 &= -6\,, \end{align}

i.e. \displaystyle c=-1 or \displaystyle c=1. The relation \displaystyle d=-3c gives that the corresponding values for \displaystyle d are \displaystyle d=3 and \displaystyle d=-3. The two last equations give us the corresponding values for \displaystyle a and \displaystyle b,


\displaystyle \begin{align} c=1,\ d=-3:\quad a &= -1^2\cdot (1+3\cdot (-3)) = 8\,,\\[5pt] b &= 1^3\cdot (-3) = -3\,,\\[10pt] c=-1,\ d=3:\quad a &= -(-1)^2\cdot (-1+3\cdot 3) = -8\,,\\[5pt] b &= (-1)^3\cdot 3 = -3\,\textrm{.} \end{align}


Therefore, there are two different answers,

  • \displaystyle a=8 and \displaystyle b=-3 give the triple root \displaystyle z=1 and the single root \displaystyle z=-3,
  • \displaystyle a=-8 and \displaystyle b=-3 give the triple root \displaystyle z=-1 and the single root \displaystyle z=3.