2.1 Introduction to integrals

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
Current revision (07:53, 29 June 2009) (edit) (undo)
m
 
(45 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #797979" width="5px" |  
| style="border-bottom:1px solid #797979" width="5px" |  
-
{{Mall:Vald flik|[[2.1 Inledning till integraler|Teori]]}}
+
{{Selected tab|[[2.1 Introduction to integrals|Theory]]}}
-
{{Mall:Ej vald flik|[[2.1 Övningar|Övningar]]}}
+
{{Not selected tab|[[2.1 Exercises|Exercises]]}}
| style="border-bottom:1px solid #797979" width="100%"|  
| style="border-bottom:1px solid #797979" width="100%"|  
|}
|}
{{Info|
{{Info|
-
'''Innehåll:'''
+
'''Contents:'''
-
* Integralens definition (översiktligt).
+
* Definition of a definite integral (overview).
-
* Integralkalkylens huvudsats.
+
* The fundamental theorem of calculus.
-
* Primitiv funktion till <math>x^\alpha</math>, <math>1/x</math>, <math>e^x</math>, <math>\cos x</math> och <math>\sin x</math>.
+
* Indefinite integral (antiderivative) for <math>x^\alpha</math>, <math>1/x</math>, <math>e^x</math>, <math>\cos x</math> and <math>\sin x</math>.
-
* Primitiv funktion till summa och differens.
+
* Indefinite integral (antiderivative) for sum and difference.
}}
}}
{{Info|
{{Info|
-
'''Lärandemål:'''
+
'''Learning outcomes:'''
-
Efter detta avsnitt ska du ha lärt dig att:
+
After this section, you will have learned to :
-
* Tolka integraler som areor, dvs. "area ovanför <math>x</math>-axeln" minus "area under <math>x</math>-axeln".
+
* Interpret definite integrals as signed areas, that is, "the area above the <math>x</math>-axis" minus "the area below the <math>x</math>-axis".
-
* Förstå andra tolkningar av integralen, t.&nbsp;ex. massa/densitet, fart/sträcka, ström/laddning, etc.
+
* Understand other interpretations of the definite integral, for example, density / mass, speed / displacement, power / charge , etc.
-
* Kunna bestämma primitiv funktion till <math>x^\alpha</math>, <math>1/x</math>, <math>e^{kx}</math>, <math>\cos kx</math>, <math>\sin kx</math> och summa/differens av sådana termer.
+
* Determine an indefinite integral, or antiderivative, for <math>x^\alpha</math>, <math>1/x</math>, <math>e^{kx}</math>, <math>\cos kx</math>, <math>\sin kx</math> and the sum / difference of such terms.
-
* Kunna räkna ut area under en funktionskurva.
+
*Calculate the area under the graph of a function.
-
* Kunna räkna ut area mellan två funktionskurvor.
+
* Calculate the area between the graphs of two functions.
-
* Veta att alla funktioner inte har primitiv funktion som kan skrivas som ett analytiskt slutet uttryck, t.ex. <math>e^{x^2} </math>, <math>(\sin x)/x</math>, <math>\sin \sin x</math>, etc.
+
* Recognise that not all functions have indefinite integrals that can be written as a closed analytical expression; be aware of examples such as <math>e^{x^2} </math>, <math>(\sin x)/x</math>, <math>\sin \sin x</math>, etc.
}}
}}
-
== Area under en funktionskurva ==
+
== Area under the curve of a function ==
-
Vi har tidigare sett att lutningen på en funktionskurva är intressant. Den ger oss information om hur funktionen ändras och har stor betydelse i många tillämpningar. På ett liknande sätt är den area som bildas mellan en funktionskurva och ''x''-axeln betydelsefull. Den är naturligtvis beroende av funktionskurvans utseende och därmed intimt besläktad med funktionen i fråga. Det är lätt att inse att denna area har en praktisk betydelse i många olika sammanhang.
+
We have previously found that the gradient of a curve of a function is interesting: it gives us information about how the function changes and has great significance in many applications. In a similar way the area between the curve of a function and the ''x''-axis is of importance. Of course, it is dependent on the curve's appearance and thus closely related to the function in question. It is easy to see that this area has practical significance in many different contexts.
-
Om ett föremål rör sig så kan vi beskriva dess hastighet ''v'' efter tiden ''t'' i ett ''v-t''-diagram. Vi ser här tre olika fiktiva exempel:
+
If an object is moving, we can illustrate its speed ''v'' plotted against time ''t'' in a ''v,t''-diagram. We can see in the figure below three different hypothetical examples:
-
{{Fristående formel||<math>v(t)=5,\qquad
 
-
v(t)= \begin{cases} 4,& 0 \le t \le 3\\ 6,& t > 3\end{cases}
 
-
\quad\text{och}\quad
 
-
v(t) = t\,\mbox{.}</math>}}
 
-
<center>{{:2.1 - Figur - Tre v-t-diagram}}</center>
+
{| width="100%" align="center"
 +
| width="2.5%" |
 +
| width="30%" |{{:2.1 - Figure - v-t-diagram with constant speed 5}}
 +
| width="2.5%" |
 +
| width="30%" |{{:2.1 - Figure - v-t-diagram with constant speed 4 and 6}}
 +
| width="2.5%" |
 +
| width="30%" |{{:2.1 - Figure - v-t-diagram with speed v(t) = t}}
 +
| width="2.5%" |
 +
|-
 +
||
 +
| valign="top" |<small> The object moves at a constant speed of 5.</small>
 +
||
 +
| valign="top" |<small> The object moves at a steady speed of 4 when an impact at ''t''&nbsp;=&nbsp;3 suddenly increases the speed to 6.</small>
 +
||
 +
| valign="top" |<small>The object is sliding down a sloping plane and has a linearly increasing speed. </small>
 +
||
 +
|}
 +
 
-
Den tillryggalagda sträckan är i respektive fall
+
The distance travelled is in each case
-
{{Fristående formel||<math>s(6) = 5\cdot 6 = 30\,\mbox{m},\quad
+
{{Displayed math||<math>s(6) = 5\times 6 = 30\,\mbox{m},\quad
-
s(6) = 4\cdot 3 + 6\cdot 3 = 30\,\mbox{m},\quad
+
s(6) = 4\times 3 + 6\times 3 = 30\,\mbox{m},\quad
-
s(6) = \frac{6\cdot 6}{2} = 18\,\mbox{m}\,\mbox{.}</math>}}
+
s(6) = \frac{6\times 6}{2} = 18\,\mbox{m}\,\mbox{.}</math>}}
-
I samtliga fall ser man att föremålets tillryggalagda sträcka motsvaras av arean under funktionskurvan.
+
In each cases, you see that the distance travelled by the object is matched by the area under the curve.
-
Fler exempel på vad arean under en funktionskurva kan symbolisera följer nedan.
+
More examples of what the area under a curve can symbolise are shown below.
<div class="exempel">
<div class="exempel">
-
'''Exempel 1'''
+
''' Example 1'''
-
<center>{{:2.1 - Figur - Diagram över energi, arbete och laddning}}</center>
 
-
''Anm.'' Eftersom arean kan approximeras med en (eller flera) rektangel så kan produkten av koordinataxlarnas enheter visa areans enhet och därmed ge en vink om vad arean symboliserar. Areans enhet:
+
{| width="100%" align="center"
-
{| class="wikitable" cellpadding="0px" cellspacing="0px" align="center"
+
| width="2.5%" |
 +
| width="30%" |{{:2.1 - Figure - Power-time-diagram}}
 +
| width="2.5%" |
 +
| width="30%" |{{:2.1 - Figure - Force-distance-diagram}}
 +
| width="2.5%" |
 +
| width="30%" |{{:2.1 - Figure - Current-time-diagram}}
 +
| width="2.5%" |
|-
|-
-
| width="300" style="text-align:center" valign="top" |
+
||
-
<math>\text{W}\cdot\text{s} = \text{J}/\text{s} \cdot\text{s} = \text{J}</math>
+
| valign="top" |<small> A solar cell which has been exposed to light of power p will have received energy that is proportional to the area under the above graph. </small>
-
| width="300" style="text-align:center" valign="top" |
+
||
-
<math>\text{N}\cdot\text{m} = \text{Nm} = \text{J}</math>
+
| valign="top" |<small>The force ''F'' applied to an object along the direction of its motion does work that is proportional to the area under the above graph. </small>
-
| width="300" style="text-align:center" valign="top" |
+
||
-
<math>\text{A}\cdot\text{s} = \text{As} = \text{C}</math> (Coulomb)
+
| valign="top" |<small> A capacitor that is charged by a current ''i'' will receive a charge which is proportional to the area under the above graph. </small>
 +
||
|}
|}
Line 70: Line 89:
-
== Integralbeteckningen ==
+
== The notation for the definite integral. ==
-
För att beskriva arean under en funktionskurva i symbolform inför man ''integraltecknet'' <math>\,\smallint\,</math> och gör följande definition:
+
In order to describe the area under the curve of a function in symbolic form one introduces the ''integral sign'' <math>\,\smallint\,</math> :
<div class="tips">
<div class="tips">
-
Med integralen av den positiva funktionen <math>f(x)</math> från <math>a</math> till <math>b</math> menas arean mellan kurvan <math>y=f(x)</math> och ''x''-axeln från <math>x=a</math> till <math>x=b</math> , vilket med symboler skrivs
+
The definite integral of a positive function <math>f(x)</math> from <math>a</math> to <math>b</math> is understood to mean the area between the curve <math>y=f(x)</math> and the interval of the ''x''-axis between <math>x=a</math> and <math>x=b</math> , and is written with the notation
-
{{Fristående formel||<math>\int_{a}^{\,b} f(x)\, dx\,\mbox{.}</math>}}
+
{{Displayed math||<math>\int_{a}^{\,b} f(x)\, dx\,\mbox{.}</math>}}
-
Talen <math>a</math> och <math>b</math> kallas undre respektive övre integrationsgräns, <math>f(x)</math> kallas integrand och <math>x</math> integrationsvariabel.
+
The numbers <math>a</math> and <math>b</math> are called the lower and upper limits of integration respectively, <math>f(x)</math> is called the integrand and <math>x</math> the variable of integration.
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 2'''
+
''' Example 2'''
{| width="100%"
{| width="100%"
-
| width="100%" |Arean under kurvan <math>y=f(x)</math> från <math>x=a</math> till <math>x=c</math> är lika med arean från <math>x=a</math> till <math>x=b</math> plus arean från <math>x=b</math> till <math>x=c</math>. Detta betyder att
+
| width="95%" | The area under the curve <math>y=f(x)</math> from <math>x=a</math> to <math>x=c</math> is equal to the area from <math>x=a</math> to <math>x=b</math> plus the area from <math>x=b</math> to <math>x=c</math>. This means that
-
{{Fristående formel||<math>\int_{a}^{\,b} f(x)\, dx + \int_{b}^{\,c} f(x)\, dx
+
{{Displayed math||<math>\int_{a}^{\,b} f(x)\, dx + \int_{b}^{\,c} f(x)\, dx
= \int_{a}^{\,c} f(x)\, dx\,\mbox{.}</math>}}
= \int_{a}^{\,c} f(x)\, dx\,\mbox{.}</math>}}
-
||{{:2.1 - Figur - Area under grafen y = f(x) från a till b och c}}
+
| width="5%" |
 +
||{{:2.1 - Figure - The area under the graph of y = f(x) from a to b and c}}
|}
|}
Line 98: Line 118:
<div class="exempel">
<div class="exempel">
-
'''Exempel 3'''
+
''' Example 3'''
{| width="100%"
{| width="100%"
-
| width="100%" | För ett föremål, vars hastighet förändras enligt funktionen <math>v(t)</math> kan den tillryggalagda sträckan efter 10&nbsp;s beskrivas med integralen
+
| width="95%" | For an object whose speed is changing according to the function <math>v(t)</math>, the distance travelled after 10&nbsp;s is characterised by the definite integral
-
{{Fristående formel||<math>\int_{0}^{10} v(t)\, dt\,\mbox{.}</math>}}
+
{{Displayed math||<math>s(10) = \int_{0}^{10} v(t)\, dt\,\mbox{.}</math>}}
-
||{{:2.1 - Figur - Area s(10) i ett v-t-diagram}}
+
''Note .'' We assume that speed and distance are measured using the same units of length.
 +
 
 +
| width="5%" |
 +
||{{:2.1 - Figure - The area s(10) in a v-t-diagram}}
|}
|}
Line 109: Line 132:
<div class="exempel">
<div class="exempel">
-
'''Exempel 4'''
+
''' Example 4'''
-
Vatten rinner in i en tank med en hastighet som är <math>f(t)</math>&nbsp;liter/s efter <math>t</math> sekunder. Integralen
+
Water is flowing into a tank at a rate of <math>f(t)</math>&nbsp;litre/s at the time <math>t</math>. The integral
-
{{Fristående formel||<math>\int_{9}^{10} f(t)\, dt</math>}}
+
{{Displayed math||<math>\int_{9}^{10} f(t)\, dt</math>}}
-
anger då hur många liter som rinner in i tanken under den tionde sekunden.
+
specifies the amount in litres which flows into the tank during the tenth second.
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 5'''
+
''' Example 5'''
-
Beräkna integralerna
+
Calculate the integrals
{| width="100%"
{| width="100%"
-
| width="100%" |
+
| width="95%" |
<ol type="a">
<ol type="a">
<li> <math>\int_{0}^{4} 3 \, dx</math><br> <br>
<li> <math>\int_{0}^{4} 3 \, dx</math><br> <br>
-
Integralen kan tolkas som arean under kurvan (linjen) <math>y=3</math>
+
The definite integral can be interpreted as area under the curve (the line) <math>y=3</math>
-
från <math>x = 0</math> till <math>x = 4</math>,
+
going from <math>x = 0</math> to <math>x = 4</math>,
-
dvs. en rektangel med basen 4 och höjden 3, <br>
+
i.e. a rectangle with the base 4 and height 3, <br>
-
<center><math>\int_{0}^{4} 3 \, dx = 4 \cdot 3 = 12\,\mbox{.}</math></center></li>
+
<center><math>\int_{0}^{4} 3 \, dx = 4 \times 3 = 12\,\mbox{.}</math></center></li>
</ol>
</ol>
-
||{{:2.1 - Figur - Area under grafen y = 3 från x = 0 till x = 4}}
+
| width="5%" |
 +
||{{:2.1 - Figure - The area under the graph of y = 3 from x = 0 to x = 4}}
|}
|}
{| width="100%"
{| width="100%"
-
| width="100%" |
+
| width="95%" |
<ol type="a" start=2>
<ol type="a" start=2>
<li><math>\int_{2}^{5} \Bigl(\frac{x}{2} -1 \Bigr) \, dx</math> <br><br>
<li><math>\int_{2}^{5} \Bigl(\frac{x}{2} -1 \Bigr) \, dx</math> <br><br>
-
Integralen kan tolkas som arean under linjen <math>y=x/2-1</math> från
+
The integral can be interpreted as the area under the line <math>y=x/2-1</math> going from
-
<math>x = 2</math> till <math>x = 5</math>,
+
<math>x = 2</math> to <math>x = 5</math>,
-
dvs. en triangel med basen 3 och höjden 1,5 <br>
+
i.e. a triangle with a base 3 and a height 1.5 <br>
<center><math>\int_{2}^{5} \Bigl(\frac{x}{2} -1 \Bigr) \, dx
<center><math>\int_{2}^{5} \Bigl(\frac{x}{2} -1 \Bigr) \, dx
-
= \frac{3 \cdot 1{,}5}{2} = 2{,}25\,\mbox{.}</math></center></li>
+
= \frac{3 \times 1\textrm{.}5}{2} = 2\textrm{.}25\,\mbox{.}</math></center></li>
</ol>
</ol>
-
||{{:2.1 - Figur - Area under grafen y = x/2 - 1 från x = 2 till x = 5}}
+
| width="5%" |
 +
||{{:2.1 - Figure - The area under the graph of y = x/2 - 1 from x = 2 to x = 5}}
|}
|}
{| width="100%"
{| width="100%"
-
| width="100%" |
+
| width="95%" |
<ol type="a" start=3>
<ol type="a" start=3>
-
<li><math>\int_{0}^{a} kx \, dx\,\mbox{}\quad</math> där
+
<li><math>\int_{0}^{a} kx \, dx\,\mbox{}\quad</math> where
<math>k>0\,</math>.<br><br>
<math>k>0\,</math>.<br><br>
-
Integralen kan tolkas som arean under linjen <math>y=kx</math> från
+
The integral can be interpreted as the area under the line <math>y=kx</math> going from
-
<math>x = 0</math> till <math>x = a</math>, dvs. en triangel
+
<math>x = 0</math> to <math>x = a</math>, that is a triangle with a base <math>a</math> and a height <math>ka</math><br>
-
med basen <math>a</math> och höjden <math>ka</math><br>
+
<center><math>\int_{0}^{\,a} kx\,dx = \frac{a \times ka}{2}
-
<center><math>\int_{0}^{\,a} kx\,dx = \frac{a \cdot ka}{2}
+
= \frac{ka^2}{2}\,\mbox{.}</math></center></li>
= \frac{ka^2}{2}\,\mbox{.}</math></center></li>
</ol>
</ol>
-
||{{:2.1 - Figur - Area under grafen y = kx från x = 0 till x = a}}
+
| width="5%" |
 +
||{{:2.1 - Figure - The area under the graph of y = kx from x = 0 to x = a}}
|}
|}
Line 166: Line 191:
-
== Primitiv funktion ==
+
== The antiderivative and the indefinite integral ==
-
Funktionen <math>F</math> är en ''primitiv'' funktion till <math>f</math> om <math>F'(x) = f(x)</math> i något intervall. Om <math>F(x)</math> är en primitiv funktion till <math>f(x)</math> så är det klart att även <math>F(x) + C</math> är det, för varje konstant <math>C</math>. Dessutom kan man visa att <math>F(x) + C</math> beskriver samtliga primitiva funktioner till <math>f(x)</math>.
+
The function <math>F</math> is an ''antiderivative'' (or ''primitive function'') for <math>f</math> if <math>F'(x) = f(x)</math> in any interval. If <math>F(x)</math> is an antiderivative for <math>f(x)</math>, it is clear that <math>F(x) + C</math> is as well, for any constant <math>C</math>. In addition, it can be shown that <math>F(x) + C</math> gives all possible antiderivatives of <math>f(x)</math>; the expression <math>F(x) + C</math> is known as the ''indefinite integral'' of <math>f</math>, and is written
 +
 
 +
{{Displayed math||<math>\int f(x)\, dx\,\mbox{.}</math>}}
<div class="exempel">
<div class="exempel">
'''Exempel 6'''
'''Exempel 6'''
<ol type="a">
<ol type="a">
-
<li><math>F(x) = x^3 + \cos x - 5</math> är en primitiv funktion till
+
<li><math>F(x) = x^3 + \cos x - 5</math> is an antiderivative of
-
<math>f(x) = 3x^2 - \sin x</math>, eftersom
+
<math>f(x) = 3x^2 - \sin x</math>, because
-
{{Fristående formel||<math>F'(x) = D\,(x^3+\cos x-5) = 3x^2-\sin x-0
+
{{Displayed math||<math>F'(x) = D\,(x^3+\cos x-5) = 3x^2-\sin x-0
= f(x)\,\mbox{.}</math>}}</li>
= f(x)\,\mbox{.}</math>}}</li>
-
<li><math>G(t) = e^{3t + 1} + \ln t</math> är en primitiv funktion
+
<li><math>G(t) = e^{3t + 1} + \ln t</math> is an antiderivative of <math>g(t)= 3 e^{3t + 1} + 1/t</math>, because
-
till <math>g(t)= 3 e^{3t + 1} + 1/t</math>, eftersom
+
{{Displayed math||<math>G'(t) = D\,\bigl(e^{3t+1}+\ln t\bigr)
-
{{Fristående formel||<math>G'(t) = D\,\bigl(e^{3t+1}+\ln t\bigr)
+
= e^{3t+1}\times 3+\frac{1}{t} = g(t)\,\mbox{.}</math>}}</li>
-
= e^{3t+1}\cdot 3+\frac{1}{t} = g(t)\,\mbox{.}</math>}}</li>
+
<li><math>F(x) = \frac{1}{4}x^4 - x + C\,</math>, where <math>C</math> is an arbitrary constant, gives the indefinite integral of <math>f(x) = x^3 - 1</math>.</li>
-
<li><math>F(x) = \frac{1}{4}x^4 - x + C\,</math>, där <math>C</math> är
+
-
en godtycklig konstant, beskriver samtliga primitiva
+
-
funktioner till <math>f(x) = x^3 - 1</math>.</li>
+
</ol>
</ol>
Line 189: Line 213:
-
== Samband mellan integral och primitiv funktion ==
+
== The relationship between definite and indefinite integrals==
-
Vi har tidigare konstaterat att arean under en funktionskurva, dvs. integralen av en funktion, är beroende av funktionskurvans utseende. Det visar sig att detta beroende utnyttjar den primitiva funktionen, vilket också ger oss möjligheten att beräkna en sådan area exakt.
+
We have previously found that the area under the curve of a function, i.e. its definite integral, is dependent on the form of the curve. It turns out that this dependence makes use of the antiderivative, which also allows us, in certain circumstances, to calculate such an area exactly.
-
Antag att <math>f</math> är en kontinuerlig funktion på ett intervall (= funktionskurvan har inga avbrott i intervallet). Värdet av integralen <math>\ \int_{a}^{b} f(x) \, dx\ </math> är då beroende av integrationsgränserna <math>a</math> och <math>b</math>, men om man låter <math>a</math> vara ett fixt värde och sätter <math>x</math> som övre gräns blir integralens värde beroende enbart av den övre integrationsgränsen. För att tydliggöra detta använder vi här i stället <math>t</math> som integrationsvariabel:
+
Suppose that <math>f</math> is a continuous function in an interval. The value of the integral <math>\ \int_{a}^{b} f(x) \, dx\ </math>then is dependent on the limits of integration <math>a</math> and <math>b</math>, but if one lets <math>a</math> have a fixed value and <math>x</math> be the upper limit, the integral will depend only on the upper limit. To clarify this, we prefer to use <math>t</math> as the variable of integration:
-
<center>{{:2.1 - Figur - Area under grafen y = f(x) från t = a till t = x}}</center>
+
<center>{{:2.1 - Figure - The area under the graph of y = f(x) from t = a to t = x}}</center>
-
{{Fristående formel||<math>A(x) = \int_{a}^{\,x} f(t) \, dt\,\mbox{.}</math>}}
+
{{Displayed math||<math>A(x) = \int_{a}^{\,x} f(t) \, dt\,\mbox{.}</math>}}
-
Vi ska nu visa att <math>A</math> i själva verket är en primitiv funktion till <math>f</math>.
+
We shall now show that <math>A</math> is in fact an antiderivative of <math>f</math>.
-
<center>{{:2.1 - Figur - Area under grafen y = f(x) från t = a till t = x + h}}</center>
+
<center>{{:2.1 - Figure - The area under the graph of y = f(x) from t = a to t = x + h}}</center>
-
Den totala arean under kurvan från <math>t=a</math> till <math>t=x+h</math> kan skrivas som <math>A(x+h)</math> och är approximativt lika med arean <math>A(x)</math> fram till <math>t=x</math> plus stapelns area, dvs.
+
The total area under the curve from <math>t=a</math> to <math>t=x+h</math> can be written as <math>A(x+h)</math> and is approximately equal to the area up to <math>t=x</math> plus the area of the column between <math>t=x</math> and <math>t=x+h</math>, i.e. .
-
{{Fristående formel||<math>A(x+h)\approx A(x)+h\cdot f(c)</math>}}
+
{{Displayed math||<math>A(x+h)\approx A(x)+h\, f(c)</math>}}
-
där <math>c</math> är ett tal mellan <math>x</math> och <math>x+h</math>. Detta uttryck kan vi skriva om som
+
where <math>c</math> is a number between <math>x</math> and <math>x+h</math>. This expression can be rewriten as
-
{{Fristående formel||<math>\frac{A(x+h)-A(x)}{h} = f(c)\,\mbox{.}</math>}}
+
{{Displayed math||<math>\frac{A(x+h)-A(x)}{h} = f(c)\,\mbox{.}</math>}}
-
Om vi låter <math>h \rightarrow 0</math> så går vänstra ledet mot <math>A'(x)</math> och det högra ledet mot <math>f(x)</math> , dvs.
+
If we let <math>h \rightarrow 0</math> the the left-hand side tends towards <math>A'(x)</math> and the right-hand side tends towards <math>f(x)</math> , i.e. .
-
{{Fristående formel||<math>A'(x) = f(x)\,\mbox{.}</math>}}
+
{{Displayed math||<math>A'(x) = f(x)\,\mbox{.}</math>}}
-
Funktionen <math>A(x)</math> är alltså en primitiv funktion till <math>f(x)</math>.
+
Thus the function <math>A(x)</math> is an antiderivative of <math>f(x)</math>.
-
== Beräkning av integraler ==
+
== Evaluating integrals ==
-
För att kunna använda primitiva funktioner vid beräkning av en bestämd integral, noterar vi först att om <math>F</math> är en primitiv funktion till <math>f</math> så är
+
In order to use antiderivatives to calculate a definite integral, we note first that if <math>F</math> is an antiderivative of <math>f</math> then
-
{{Fristående formel||<math>\int_{a}^{\,b} f(t) \, dt = F(b) + C</math>}}
+
{{Displayed math||<math>\int_{a}^{\,b} f(t) \, dt = F(b) + C</math>}}
-
där konstanten <math>C</math> måste väljas så att högerledet blir noll när <math>b=a</math>, dvs.
+
where the constant <math>C</math> must be chosen so that the right-hand side is zero when <math>b=a</math>, i.e.
-
{{Fristående formel||<math>\int_{a}^{\,a} f(t) \, dt = F(a) + C = 0</math>}}
+
{{Displayed math||<math>\int_{a}^{\,a} f(t) \, dt = F(a) + C = 0</math>}}
-
vilket ger att <math>C=-F(a)</math>. Om vi sammanfattar har vi alltså att
+
which gives that <math>C=-F(a)</math>. If we summarise, we have that
-
{{Fristående formel||<math>\int_{a}^{\,b} f(t) \, dt
+
{{Displayed math||<math>\int_{a}^{\,b} f(t) \, dt
= F(b) - F(a)\,\mbox{.}</math>}}
= F(b) - F(a)\,\mbox{.}</math>}}
-
Vi kan naturligtvis här lika gärna välja <math>x</math> som integrationsvariabel och skriva
+
We can, of course, just as easily, choose <math>x</math> as the variable of integration and write
-
{{Fristående formel||<math>\int_{a}^{\,b} f(x) \, dx
+
{{Displayed math||<math>\int_{a}^{\,b} f(x) \, dx
= F(b) - F(a)\,\mbox{.}</math>}}
= F(b) - F(a)\,\mbox{.}</math>}}
-
Vid beräkning av integraler utför man detta i två steg. Först bestämmer man en primitiv funktion och sedan sätter man in integrationsgränserna. Man skriver vanligtvis
+
Evaluating a definite integral is performed in two steps. First one determines an antiderivative, and then inserts the limits of integration. The usual way of writing this is as follows,
-
{{Fristående formel||<math>\int_{a}^{\,b} f(x) \, dx
+
{{Displayed math||<math>\int_{a}^{\,b} f(x) \, dx
= \Bigl[\,F(x)\,\Bigr]_{a}^{b} = F(b) - F(a)\,\mbox{.}</math>}}
= \Bigl[\,F(x)\,\Bigr]_{a}^{b} = F(b) - F(a)\,\mbox{.}</math>}}
<div class="exempel">
<div class="exempel">
-
'''Exempel 7'''
+
''' Example 7'''
 +
The area bounded by the curve <math>y=2x - x^2</math> and the ''x''-axis can be calculated by using the integral
{| width="100%"
{| width="100%"
-
| width="100%" |
+
| width="95%" |
-
Arean som begränsas av kurvan <math>y=2x - x^2</math> och ''x''-axeln kan beräknas med hjälp av integralen
+
{{Displayed math||<math>\int_{0}^{2} (2x-x^2) \, dx\,\mbox{.}</math>}}
-
{{Fristående formel||<math>\int_{0}^{2} (2x-x^2) \, dx\,\mbox{.}</math>}}
+
Since <math>x^2-x^3/3</math> is an antiderivative of the integrand, the integral's value is
-
Eftersom <math>x^2-x^3/3</math> är en primitiv funktion till integranden är integralens värde
+
{{Displayed math||<math>\begin{align*}\int_{0}^{2} (2x-x^2) \, dx &= \Bigl[\,x^2 - {\textstyle\frac{1}{3}}x^3\, \Bigr]_{0}^{2}\\[4pt] &= \bigl( 2^2 - \tfrac{1}{3}2^3\bigr) - \bigl(0^2-\tfrac{1}{3}0^3\bigr)\\[4pt] &= 4 - \tfrac{8}{3} = \tfrac{4}{3}\,\mbox{.}\end{align*}</math>}}
-
 
+
-
{{Fristående formel||<math>\begin{align*}\int_{0}^{2} (2x-x^2) \, dx &= \Bigl[\,x^2 - {\textstyle\frac{1}{3}}x^3\, \Bigr]_{0}^{2}\\[4pt] &= \bigl( 2^2 - \tfrac{1}{3}2^3\bigr) - \bigl(0^2-\tfrac{1}{3}0^3\bigr)\\[4pt] &= 4 - \tfrac{8}{3} = \tfrac{4}{3}\,\mbox{.}\end{align*}</math>}}
+
-
Arean är <math>\frac{4}{3}</math>&nbsp;a.e.
+
The area is<math>\frac{4}{3}</math>&nbsp;u.a.
-
||{{:2.1 - Figur - Area under grafen y = 2x - x² från x = 0 till x = 2}}
+
| width="5%" |
 +
||{{:2.1 - Figure - The area under the graph of y = 2x - x² from x = 0 to x = 2}}
|}
|}
-
''Anm:'' Integralvärdet har ingen enhet. I praktiska tillämpningar kan dock arean ha en enhet. Om arean i en enhetslös figur efterfrågas skriver man ofta ''a.e. (areaenheter)'' efter siffervärdet.
+
''Note:'' The value of the integral contains no unit. In practical applications, however, the area may have a unit.
-
 
+
</div>
</div>
-
== Baklängesderivering ==
+
== Antidifferentiation ==
-
Att derivera de vanliga funktionstyperna innebär inga oöverstigliga problem; det finns generella metoder för detta. Att utföra den omvända operationen, dvs. hitta en primitiv funktion till en given funktion är dock betydligt svårare och i vissa fall omöjligt! Det finns ingen systematisk metod som fungerar överallt, men genom att utnyttja de vanliga deriveringsreglerna "baklänges" och dessutom lära sig ett antal specialmetoder och knep kan man klara av en stor del av de funktioner som vanligtvis förekommer.
+
To differentiate common functions is not an insurmountable problem: there are general methods for doing this. To perform the reverse operation - that is, find an antiderivative (or an indefinite integral) for a given function - is much more difficult, however, and in some cases impossible! There is no systematic method that works everywhere, but by exploiting the usual rules of differentiation "in the opposite direction" and also by learning a number of special techniques and tricks one can tackle a large number of the functions that turn up.
-
Symbolen <math>\ \int f(x) \,dx\ </math> kallas den ''obestämda'' integralen av <math>f(x)</math> och används för att beteckna en godtycklig primitiv funktion till <math>f(x)</math>. De vanliga deriveringsreglerna ger att
+
The usual rules of differentiation give
-
{{Fristående formel||<math>\begin{align*}\int x^n \, dx &= \frac{x^{n+1}}{n+1} + C \quad \text{där }\ n \ne -1\\[6pt] \int x^{-1} \, dx &= \ln |x| + C\\[6pt] \int e^x \, dx &= e^x + C\\[6pt] \int \cos x \, dx &= \sin x + C\\[6pt] \int \sin x \, dx &= -\cos x + C \end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*}\int x^n \, dx &= \frac{x^{n+1}}{n+1} + C \quad \text{where }\ n \ne -1\\[6pt] \int x^{-1} \, dx &= \ln |x| + C\\[6pt] \int e^x \, dx &= e^x + C\\[6pt] \int \cos x \, dx &= \sin x + C\\[6pt] \int \sin x \, dx &= -\cos x + C \end{align*}</math>}}
<div class="exempel">
<div class="exempel">
-
'''Exempel 8'''
+
''' Example 8'''
<ol type="a">
<ol type="a">
<li><math>\int (x^4 - 2x^3 + 4x - 7)\,dx
<li><math>\int (x^4 - 2x^3 + 4x - 7)\,dx
Line 284: Line 307:
<li><math>\int \Bigl(\frac{3}{x^2} -\frac{1}{2x^3} \Bigr) dx
<li><math>\int \Bigl(\frac{3}{x^2} -\frac{1}{2x^3} \Bigr) dx
= \int \Bigl( 3x^{-2} - \frac{1}{2} x^{-3} \Bigr) dx
= \int \Bigl( 3x^{-2} - \frac{1}{2} x^{-3} \Bigr) dx
-
= \frac{3x^{-1}}{-1} - \frac{1}{2} \cdot \frac{x^{-2}}{(-2)} + C</math><br>
+
= \frac{3x^{-1}}{-1} - \frac{1}{2} \, \frac{x^{-2}}{(-2)} + C</math><br>
<math>\phantom{\int \Bigl(\frac{3}{x^2} -\frac{1}{2x^3} \Bigr) dx}{}
<math>\phantom{\int \Bigl(\frac{3}{x^2} -\frac{1}{2x^3} \Bigr) dx}{}
= - 3x^{-1} + \tfrac{1}{4}x^{-2} + C
= - 3x^{-1} + \tfrac{1}{4}x^{-2} + C
= -\frac{3}{x} + \frac{1}{4x^2} + C\vphantom{\Biggl(}</math></li>
= -\frac{3}{x} + \frac{1}{4x^2} + C\vphantom{\Biggl(}</math></li>
<li><math>\int \frac{2}{3x} \,dx
<li><math>\int \frac{2}{3x} \,dx
-
= \int \frac{2}{3} \cdot \frac{1}{x} \, dx
+
= \int \frac{2}{3} \, \frac{1}{x} \, dx
= \tfrac{2}{3} \ln |x| + C</math></li>
= \tfrac{2}{3} \ln |x| + C</math></li>
<li><math>\int ( e^x - \cos x - \sin x ) \, dx
<li><math>\int ( e^x - \cos x - \sin x ) \, dx
Line 298: Line 321:
-
== Kompensation för ”inre derivata”==
+
== Compensating for the ”inner derivative”==
-
Vid derivering av en sammansatt funktion använder man sig av ''kedjeregeln'', som innebär att man '''multiplicerar''' med den ''inre derivatan''. Om den inre funktionen då är linjär så blir den inre derivatan en konstant. Vid integrering av en sådan funktion måste man därför '''dividera''' med den inre derivatan för att kompensera för detta.
+
When differentiating a composite function one makes use of the ''chain rule'', which means that one must '''multiply''' by the ''inner derivative''. If the inner function is linear, then the inner derivative is a constant. Thus when integrating such a composite function, one must '''divide''' by the inner derivative as a sort of compensation.
<div class="exempel">
<div class="exempel">
-
'''Exempel 9'''
+
''' Example 9'''
<ol type="a">
<ol type="a">
<li><math>\int e^{3x} \, dx = \frac{e^{3x}}{3} + C</math></li>
<li><math>\int e^{3x} \, dx = \frac{e^{3x}}{3} + C</math></li>
<li><math>\int \sin 5x \, dx = - \frac{ \cos 5x}{5} + C</math></li>
<li><math>\int \sin 5x \, dx = - \frac{ \cos 5x}{5} + C</math></li>
-
<li><math>\int (2x +1)^4 \, dx = \frac{(2x+1)^5}{5 \cdot 2} + C</math></li>
+
<li><math>\int (2x +1)^4 \, dx = \frac{(2x+1)^5}{5 \times 2} + C</math></li>
</ol>
</ol>
Line 314: Line 337:
<div class="exempel">
<div class="exempel">
-
'''Exempel 10'''
+
''' Example 10'''
<ol type="a">
<ol type="a">
<li><math>\int \sin kx \, dx = - \frac{\cos kx}{k} + C</math></li>
<li><math>\int \sin kx \, dx = - \frac{\cos kx}{k} + C</math></li>
Line 323: Line 346:
</div>
</div>
-
Observera att detta sätt att kompensera för den inre derivatan endast fungerar om den inre derivatan är en konstant.
+
Note that this way to compensate for the inner derivative only works if the inner derivative is a constant.
-
== Räkneregler för integraler ==
+
== Rules for evaluating integrals ==
-
Med hjälp av beräkningsformeln för integraler är det lätt att visa följande räkneregler för integraler:
+
Using the way integration has been defined here, it is easy to show the following properties of integration:
# <math>\int_{b}^{\,a} f(x) \, dx = - \int_{a}^{\,b} f(x) \, dx\,\mbox{,}\vphantom{\Biggl(}</math>
# <math>\int_{b}^{\,a} f(x) \, dx = - \int_{a}^{\,b} f(x) \, dx\,\mbox{,}\vphantom{\Biggl(}</math>
# <math>\int_{a}^{\,b} f(x) \, dx + \int_{a}^{\,b} g(x) \, dx = \int_{a}^{\,b} (f(x) + g(x)) \, dx\,\mbox{,}\vphantom{\Biggl(}</math>
# <math>\int_{a}^{\,b} f(x) \, dx + \int_{a}^{\,b} g(x) \, dx = \int_{a}^{\,b} (f(x) + g(x)) \, dx\,\mbox{,}\vphantom{\Biggl(}</math>
-
# <math>\int_{a}^{\,b} k \cdot f(x)\, dx = k \int_{a}^{\,b} f(x)\, dx\,\mbox{,}\vphantom{\Biggl(}</math>
+
# <math>\int_{a}^{\,b} k \, f(x)\, dx = k \int_{a}^{\,b} f(x)\, dx\,\mbox{,}\vphantom{\Biggl(}</math>
# <math>\int_{a}^{\,b} f(x) \, dx + \int_{b}^{\,c} f(x)\, dx = \int_{a}^{\,c} f(x)\, dx\,\mbox{.}</math>
# <math>\int_{a}^{\,b} f(x) \, dx + \int_{b}^{\,c} f(x)\, dx = \int_{a}^{\,c} f(x)\, dx\,\mbox{.}</math>
-
Dessutom gäller att area under ''x''-axeln räknas negativt, dvs. om funktionskurvan ligger under ''x''-axeln så blir integralens värde negativt:
+
Moreover, areas below the ''x''-axis are subtracted, that is, if the curve of the function lies below the ''x''-axis in a region, the integral has a negative value in this region:
-
<center>{{:2.1 - Figur - Areor A₁ och A₂ mellan y = f(x) och x-axeln}}</center>
+
{| align="center"
-
 
+
||<math>\begin{align*}A_1 &= \int_{a}^{\,b} f(x)\, dx,\\[6pt] A_2 &= -\int_{b}^{\,c} f(x)\, dx\,\mbox{.} \end{align*}</math>
-
{{Fristående formel||<math>A_1 = \int_{a}^{\,b} f(x)\, dx,\qquad
+
| width="10%" |
-
A_2 = -\int_{b}^{\,c} f(x)\, dx</math>}}
+
||{{:2.1 - Figure - The areas A₁ and A₂ between y = f(x) and the x-axis}}
 +
|}
-
Den sammanlagda arean blir <math>\ A_1 + A_2 = \int_{a}^{\,b} f(x)\, dx - \int_{b}^{\,c} f(x)\, dx\,</math>.
+
The total area is <math>\ A_1 + A_2 = \int_{a}^{\,b} f(x)\, dx - \int_{b}^{\,c} f(x)\, dx\,</math>.
-
''Anm.'' Värdet av en '''integral''' kan alltså vara negativt, medan en '''area''' alltid har ett positivt värde.
+
''Note .'' The value of a '''definite integral''' can be negative, while an '''area''' always has a positive value.
<div class="exempel">
<div class="exempel">
-
'''Exempel 11'''
+
''' Example 11'''
<ol type="a">
<ol type="a">
<li><math>\int_{1}^{2} (x^3 - 3x^2 + 2x + 1) \, dx + \int_{1}^{2} 2 \, dx
<li><math>\int_{1}^{2} (x^3 - 3x^2 + 2x + 1) \, dx + \int_{1}^{2} 2 \, dx
Line 354: Line 378:
<math>\qquad{}= \Bigl[\,\tfrac{1}{4}x^4 - x^3 + x^2 + 3x\,\Bigr]_{1}^{2}
<math>\qquad{}= \Bigl[\,\tfrac{1}{4}x^4 - x^3 + x^2 + 3x\,\Bigr]_{1}^{2}
\vphantom{\Biggr)^2}</math><br>
\vphantom{\Biggr)^2}</math><br>
-
<math>\qquad{}= \bigl(\tfrac{1}{4}\cdot 4-2^3+2^2+3\cdot 2\bigr)
+
<math>\qquad{}= \bigl(\tfrac{1}{4}\times 2^4-2^3+2^2+3\times 2\bigr)
-
- \bigl(\tfrac{1}{4}\cdot 1^4 - 1^3 + 1^2
+
- \bigl(\tfrac{1}{4}\times 1^4 - 1^3 + 1^2
-
+ 3\cdot 1\bigr)\vphantom{\Biggr)^2}</math><br>
+
+ 3\times 1\bigr)\vphantom{\Biggr)^2}</math><br>
-
<math>\qquad{}=6-3-\tfrac{1}{4} = \tfrac{11}{4}</math></li>
+
<math>\qquad{}=6-3-\tfrac{1}{4} = \tfrac{11}{4}</math><br/>
 +
{|
 +
| align="center" |{{:2.1 - Figure - The area of y = x³ - 3x² + 2x + 1, y = 2 and y = x³ - 3x² + 2x + 3}}
 +
|-
 +
||<small> The diagram on the left shows the area under the graph for ''f''(''x'')&nbsp;= ''x''³&nbsp;- 3''x''²&nbsp;+ 2''x''&nbsp;+&nbsp;1 and the middle diagram shows the area under the graph for ''g''(''x'')&nbsp;=&nbsp;2. In the diagram on the right these areas are summed and give the area under the graph for ''f''(''x'')&nbsp;+&nbsp;''g''(''x'').</small>
 +
|}
 +
</li>
</ol>
</ol>
-
<center>{{:2.1 - Figur - Area för y = x³ - 3x² + 2x + 1, y = 2 och y = x³ - 3x² + 2x + 3}}</center>
 
<ol type="a" start=2>
<ol type="a" start=2>
-
<li><math>\int_{1}^{3} (x^2 - 4x) \, dx + \int_{1}^{3} (4x - x^2 + 3) \, dx
+
<li><math>\int_{1}^{3} (x^2/2 - 2x) \, dx + \int_{1}^{3} (2x - x^2/2 + 3/2) \, dx
-
=\int_{1}^{3} 3 \, dx = \Bigl[\,3x\,\Bigr]_{1}^{3}
+
= \int_{1}^{3} 3/2 \, dx</math><br/>
-
= 3\cdot 3 - 3\cdot 1 = 6</math></li>
+
<math>\qquad{} = \Bigl[\,\tfrac{3}{2}x\,\Bigr]_{1}^{3}
 +
= \tfrac{3}{2}\times 3 - \tfrac{3}{2}\times 1 = 3</math><br/>
 +
{|
 +
| align="center" |{{:2.1 - Figure - The area of y = x²/2 - 2x, y = 2x - x²/2 + 3/2 and y = 3/2}}
 +
|-
 +
||<small>The graph to ''f''(''x'')&nbsp;= ''x''²/2&nbsp;- 2''x'' (diagram on the left) and the graph to ''g''(''x'')&nbsp;= 2''x''&nbsp;- ''x''²/2&nbsp;+ 3/2 (diagram in the middle) are inverted with respect to each other about the line ''y''&nbsp;= 3/4 (dotted line in the diagrams). This means the sum ''f''(''x'')&nbsp;+ ''g''(''x'') is equal to&nbsp;3/2. and is a constant. Thus the sum of the integrals is equal to the area of a rectangle with base &nbsp;2 and height&nbsp;3/2 (diagram on the right). </small>
 +
|}
 +
 
 +
</li>
</ol>
</ol>
-
<center>{{:2.1 - Figur - Area för y = x² - 4x, y = 4x - x² + 3 och y = 3}}</center>
 
<ol type="a" start=3>
<ol type="a" start=3>
Line 382: Line 418:
= 2 - \tfrac{2}{3}\ln 2 </math></li>
= 2 - \tfrac{2}{3}\ln 2 </math></li>
</ol>
</ol>
 +
<ol type="a" start=4>
<ol type="a" start=4>
Line 387: Line 424:
= \Bigl[\,\frac{x^3}{3} - x\,\Bigl]_{-1}^{2}
= \Bigl[\,\frac{x^3}{3} - x\,\Bigl]_{-1}^{2}
= \bigl(\tfrac{8}{3} - 2\bigr) - \bigl(\tfrac{-1}{3} + 1 \bigr)
= \bigl(\tfrac{8}{3} - 2\bigr) - \bigl(\tfrac{-1}{3} + 1 \bigr)
-
= 0</math></li>
+
= 0</math><br/>
 +
{|
 +
| align="center" |{{:2.1 - Figure - The area of y = x² - 1}}
 +
|-
 +
||<small> The figure shows the graph of ''f''(''x'') = ''x''² - 1 and the calculation above shows that the shaded area below the ''x''-axis is equal to the shaded area above the ''x''-axis.</small>
 +
|}
 +
</li>
</ol>
</ol>
- 
-
<center>{{:2.1 - Figur - Area för y = x² - 1}}</center>
 
- 
-
{|width="80%" align="center"
 
-
||<small>Beräkningen ovan visar att den skuggade arean under ''x''-axeln är lika stor som den skuggade arean ovanför ''x''-axeln.</small>
 
-
|}
 
</div>
</div>
-
== Area mellan kurvor ==
+
== Area between curves ==
-
Om <math>f(x) \ge g(x)</math> i ett intervall <math>a\le x\le b</math> gäller att arean mellan funktionskurvorna ges av
+
If <math>f(x) \ge g(x)</math> in an interval <math>a\le x\le b</math> then the area between the curves is given by
-
{{Fristående formel||<math>\int_{a}^{b} f(x) \, dx
+
{{Displayed math||<math>\int_{a}^{b} f(x) \, dx
- \int_{a}^{b} g(x) \, dx\,\mbox{,}</math>}}
- \int_{a}^{b} g(x) \, dx\,\mbox{,}</math>}}
-
vilket kan förenklas till
+
which can be simplified to
-
{{Fristående formel||<math>\int_{a}^{b} (f(x) - g(x)) \, dx\,\mbox{.}</math>}}
+
{{Displayed math||<math>\int_{a}^{b} (f(x) - g(x)) \, dx\,\mbox{.}</math>}}
-
<center>{{:2.1 - Figur - Area mellan y = f(x) och y = g(x)}}</center>
+
<center>{{:2.1 - Figure - The area between y = f(x) and y = g(x)}}</center>
 +
{| width="90%" align="center"
 +
||<small>If ''f''(''x'') and ''g''(''x'') take positive values and ''f''(''x'') is greater than ''g''(''x''), the area between the graphs of ''f'' and ''g'' (the figure on the left) can be obtained as the difference between the area under the graph ''f'' (figure in the middle) and the area under the graph ''g'' (the figure on the right).</small>
 +
|}
-
Observera att det inte spelar någon roll om <math>f(x) < 0</math> eller <math>g(x) < 0</math> så länge som <math>f(x) \ge g(x)</math>. Arean mellan kurvorna är naturligtvis lika stor oavsett om kurvorna ligger över eller under ''x''-axeln, vilket följande figurer illustrerar:
+
Note that it does not matter whether <math>f(x) < 0</math> or <math>g(x) < 0</math> as long as <math>f(x) \ge g(x)</math>. The value of the area between the curves is independent of whether the curves are above or below the ''x''-axis, as the following figures illustrate:
-
 
+
-
<center>{{:2.1 - Figur - Area translaterad i y-led}}</center>
+
-
 
+
-
{{Fristående formel||<math>\begin{align*} A &= \int_{a}^{b} \bigl(f(x)-g(x)\bigr)\,dx\\[4pt] A &= \int_{a}^{b} \bigl((f(x)-3) - (g(x)-3)\bigr)\,dx = \int_{a}^{b} \bigl(f(x)-g(x)\bigr)\,dx\\[4pt] A &= \int_{a}^{b} \bigl((f(x)-6) - (g(x)-6)\bigr)\,dx = \int_{a}^{b}\bigl(f(x)-g(x)\bigr)\,dx\end{align*}</math>}}
+
 +
<center>{{:2.1 - Figure - An area shifted in the y-direction}}</center>
 +
{| width="90%" align="center"
 +
||<small>The area between the two graphs is not affected if the graphs are moved in the ''y''-direction. The area between the graphs of f(x) and g(x) (figure on the left) is equal to the area between the graphs of f(x) - 3 and g(x) - 3 (the figure in the middle), as well as the area between the graphs of f(x) - 6 and g(x) - 6 (figure on the right).</small>
 +
|}
<div class="exempel">
<div class="exempel">
-
'''Exempel 12'''
+
''' Example 12'''
-
{| width="100%"
+
Calculate the area bounded by the curves <math>y=e^x + 1</math> and <math>y=1 - x^2/2</math> and the lines <math>x = –1</math> and <math>x = 1</math>.
-
| width="100%" |
+
-
Beräkna arean av det område som begränsas av kurvorna <math>y=e^x + 1</math> och <math>y=1 - x^2/2</math> samt linjerna <math>x = –1</math> och <math>x = 1</math>.
+
<br>
<br>
<br>
<br>
-
Eftersom <math>e^x + 1 > 1 - x^2/2</math> i hela intervallet blir områdets area
+
Since <math>e^x + 1 > 1 - x^2/2</math> in the whole interval the area in question is given by
-
 
+
{| width="100%"
-
{{Fristående formel||<math>\begin{align*} &\int_{-1}^{1} (e^x + 1) \, dx - \int_{-1}^{1} \Bigl( 1- \frac{x^2}{2}\Bigr) \, dx \vphantom{\Biggl(}\\ &\qquad{}= \int_{-1}^{1} \Bigl( e^x + \frac{x^2}{2} \Bigr) \, dx \vphantom{\Biggl(}\\ &\qquad{}= \Bigl[\,e^x + \frac{x^3}{6}\,\Bigr]_{-1}^{1} \vphantom{\Biggl(}\\ &\qquad{}= \Bigl( e^1 + \frac{1^3}{6} \Bigr) - \Bigl( e^{-1} + \frac{(-1)^3}{6} \Bigr)\vphantom{\Biggl(}\\ &\qquad{}= e - \frac{1}{e} + \frac{1}{3} \ \text{a.e.}\end{align*}</math>}}
+
| width="95%" |
-
||{{:2.1 - Figur - Area mellan y = e^x - 1 och y = 1 - x²/2}}
+
{{Displayed math||<math>\begin{align*} &\int_{-1}^{1} (e^x + 1) \, dx - \int_{-1}^{1} \Bigl( 1- \frac{x^2}{2}\Bigr) \, dx \vphantom{\Biggl(}\\ &\qquad{}= \int_{-1}^{1} \Bigl( e^x + \frac{x^2}{2} \Bigr) \, dx \vphantom{\Biggl(}\\ &\qquad{}= \Bigl[\,e^x + \frac{x^3}{6}\,\Bigr]_{-1}^{1} \vphantom{\Biggl(}\\ &\qquad{}= \Bigl( e^1 + \frac{1^3}{6} \Bigr) - \Bigl( e^{-1} + \frac{(-1)^3}{6} \Bigr)\vphantom{\Biggl(}\\ &\qquad{}= e - \frac{1}{e} + \frac{1}{3} \ \text{u.a.}\end{align*}</math>}}
 +
| width="5%" |
 +
||{{:2.1 - Figure - The area between y = e^x - 1 and y = 1 - x²/2}}
|}
|}
Line 437: Line 477:
<div class="exempel">
<div class="exempel">
-
'''Exempel 13'''
+
''' Example 13'''
-
Beräkna arean av det ändliga område som begränsas av kurvorna <math>y= x^2</math> och <math>y= \sqrt[\scriptstyle 3]{x}</math>.
+
Calculate the area of the finite region bounded by the curves <math>y= x^2</math> and <math>y= \sqrt[\scriptstyle 3]{x}</math>.
<br>
<br>
<br>
<br>
-
{| width="100%"
 
-
| width="100%" |
 
-
Kurvorna skär varandra i punkter där deras ''y''-värden är lika
 
-
{{Fristående formel||<math>\begin{align*} &x^2 = x^{1/3} \quad \Leftrightarrow \quad x^6 = x\quad \Leftrightarrow \quad x(x^5 - 1) = 0\\ &\quad \Leftrightarrow \quad x=0 \quad \text{eller}\quad x=1\,\mbox{.}\end{align*}</math>}}
+
The curves intersect at the points where their ''y''-values are equal
-
Mellan <math>x=0</math> och <math>x=1</math> är <math>\sqrt[\scriptstyle 3]{x}>x^2</math> så områdets area ges av
+
{{Displayed math||<math>\begin{align*} &x^2 = x^{1/3} \quad \Leftrightarrow \quad x^6 = x\quad \Leftrightarrow \quad x(x^5 - 1) = 0\\ &\quad \Leftrightarrow \quad x=0 \quad \text{or}\quad x=1\,\mbox{.}\end{align*}</math>}}
-
{{Fristående formel||<math>\int_{0}^{1} \bigl( x^{1/3} - x^2 \bigr) \, dx = \Bigl[\,\frac{ x^{4/3}}{4/3} - \frac{x^3}{3}\,\Bigr]_{0}^{1} = \Bigl[\,\frac{3x^{4/3}}{4} - \frac{x^3}{3}\, \Bigr]_{0}^{1} = \tfrac{3}{4} - \tfrac{1}{3} - 0 = \tfrac{5}{12}\ \text{a.e.}</math>}}
+
{| width="100%"
-
||{{:2.1 - Figur - Area mellan y = ∛x och y = x²}}
+
| width="95%" | Between <math>x=0</math> and <math>x=1</math>, <math>\sqrt[\scriptstyle 3]{x}>x^2</math> is true, thus the area is
 +
 
 +
{{Displayed math||<math>\begin{align*}\int_{0}^{1} \bigl( x^{1/3} - x^2 \bigr) \, dx &= \Bigl[\,\frac{ x^{4/3}}{4/3} - \frac{x^3}{3}\,\Bigr]_{0}^{1}\\
 +
&{}= \Bigl[\,\frac{3x^{4/3}}{4} - \frac{x^3}{3}\, \Bigr]_{0}^{1}\\[4pt]
 +
&{}= \tfrac{3}{4} - \tfrac{1}{3} - (0-0)\\[4pt]
 +
&{}= \tfrac{5}{12}\ \text{u.a.}\end{align*}</math>}}
 +
| width="5%" |
 +
||{{:2.1 - Figure - The area between y = ∛x och y = x²}}
|}
|}
Line 457: Line 501:
<div class="exempel">
<div class="exempel">
-
'''Exempel 14'''
+
''' Example 14'''
-
Beräkna arean av det område som begränsas av kurvan <math>y=\frac{1}{x^2}</math> samt linjerna <math>y=x</math> och <math>y = 2</math>.
+
Calculate the area of the region bounded by the curve <math>y=\frac{1}{x^2}</math>and the lines <math>y=x</math> and <math>y = 2</math>.
<br>
<br>
<br>
<br>
{| width="100%"
{| width="100%"
-
| width="100%" |
+
| width="95%" |
-
I figuren till höger är kurvan och de två linjerna skisserade och då ser vi att området kan delas upp i två delområden som var och en ligger mellan två funktionskurvor. Den totala arean är därför summan av integralerna
+
 
 +
In the figure on the right, the curve and the two lines have been sketched and then we see that the region can be divided into two sub-regions, each of which is located between two curves. The total area is the sum of the integrals
-
{{Fristående formel||<math>A_1 = \int_{a}^{\,b} (2 - \frac{1}{x^2}) \, dx
+
{{Displayed math||<math>A_1 = \int_{a}^{\,b} (2 - \frac{1}{x^2}) \, dx
-
\quad\text{och}\quad A_2 = \int_{b}^{\,c} (2- x) \, dx\,\mbox{.}</math>}}
+
\quad\text{and}\quad A_2 = \int_{b}^{\,c} (2- x) \, dx\,\mbox{.}</math>}}
-
Vi bestämmer först skärningspunkterna <math>x=a</math>, <math>x=b</math> och <math>x=c</math>:
+
We first determine the points of intersection <math>x=a</math>, <math>x=b</math> and <math>x=c</math>:
-
||{{:2.1 - Figur - Area som begränsas av y = 1/x², y = x och y = 2}}
+
| width="5%" |
 +
||{{:2.1 - Figure - The area bounded by y = 1/x², y = x and y = 2}}
|}
|}
-
*Skärningspunkten <math>x=a</math> bestäms av ekvationen
+
* The point of intersection <math>x=a</math> is obtained from the equation
-
{{Fristående formel||<math>\frac{1}{x^2} = 2
+
{{Displayed math||<math>\frac{1}{x^2} = 2
\quad \Leftrightarrow \quad x^2 = \frac{1}{2}
\quad \Leftrightarrow \quad x^2 = \frac{1}{2}
\quad \Leftrightarrow \quad x = \pm \frac{1}{\sqrt{2}}\,\mbox{.}</math>}}
\quad \Leftrightarrow \quad x = \pm \frac{1}{\sqrt{2}}\,\mbox{.}</math>}}
-
:(Den negativa roten är dock inte aktuell.)
+
:(The negative root, however, is not relevant.)
-
*Skärningspunkt <math>x=b</math> bestäms av ekvationen
+
* The point of intersection <math>x=b</math> is obtained from the equation
-
{{Fristående formel||<math>\frac{1}{x^2} = x
+
{{Displayed math||<math>\frac{1}{x^2} = x
\quad \Leftrightarrow \quad x^3 = 1
\quad \Leftrightarrow \quad x^3 = 1
\quad \Leftrightarrow \quad x=1\,\mbox{.}</math>}}
\quad \Leftrightarrow \quad x=1\,\mbox{.}</math>}}
-
*Skärningspunkt <math>x=c</math> bestäms av ekvationen <math>x = 2</math>.
+
*The point of intersection <math>x=c</math> is obtained from the equation <math>x = 2</math>.
-
Integralerna blir därför
+
The integrals are therefore
-
{{Fristående formel||<math>\begin{align*} A_1 &= \int_{1/\sqrt{2}}^{1} \Bigl(2 - \frac{1}{x^2}\Bigr) \, dx = \int_{1/\sqrt{2}}^{1} \bigl(2 - x ^{-2}\bigr) \, dx = \Bigl[\,2x-\frac{x^{-1}}{-1}\,\Bigr]_{1/\sqrt{2}}^{1}\\[4pt] &= \Bigl[\,2x + \frac{1}{x}\,\Bigr]_{1/\sqrt{2}}^{1} = (2+ 1) - \Bigl( \frac{2}{\sqrt{2}} + \sqrt{2}\,\Bigr) = 3 - 2\sqrt{2}\,\mbox{,}\\[4pt] A_2 &= \int_{1}^{2} (2 - x) \, dx = \Bigl[\,2x - \frac{x^2}{2}\,\Bigr]_{1}^{2} = (4-2) - \Bigl(2- \frac{1}{2}\Bigr) = \frac{1}{2}\,\mbox{.}
+
{{Displayed math||<math>\begin{align*} A_1 &= \int_{1/\sqrt{2}}^{1} \Bigl(2 - \frac{1}{x^2}\Bigr) \, dx = \int_{1/\sqrt{2}}^{1} \bigl(2 - x ^{-2}\bigr) \, dx = \Bigl[\,2x-\frac{x^{-1}}{-1}\,\Bigr]_{1/\sqrt{2}}^{1}\\[4pt] &= \Bigl[\,2x + \frac{1}{x}\,\Bigr]_{1/\sqrt{2}}^{1} = (2+ 1) - \Bigl( \frac{2}{\sqrt{2}} + \sqrt{2}\,\Bigr) = 3 - 2\sqrt{2}\,\mbox{,}\\[4pt] A_2 &= \int_{1}^{2} (2 - x) \, dx = \Bigl[\,2x - \frac{x^2}{2}\,\Bigr]_{1}^{2} = (4-2) - \Bigl(2- \frac{1}{2}\Bigr) = \frac{1}{2}\,\mbox{.}
\end{align*}</math>}}
\end{align*}</math>}}
-
Den sammanlagda arean blir
+
The total area is
-
{{Fristående formel||<math> A_1 + A_2 = 3 - 2\sqrt{2} + \tfrac{1}{2} = \tfrac{7}{2} - 2\sqrt{2}\ \text{a.e.}</math>}}
+
{{Displayed math||<math> A_1 + A_2 = 3 - 2\sqrt{2} + \tfrac{1}{2} = \tfrac{7}{2} - 2\sqrt{2}\ \text{u.a.}</math>}}
</div>
</div>

Current revision

       Theory          Exercises      

Contents:

  • Definition of a definite integral (overview).
  • The fundamental theorem of calculus.
  • Indefinite integral (antiderivative) for \displaystyle x^\alpha, \displaystyle 1/x, \displaystyle e^x, \displaystyle \cos x and \displaystyle \sin x.
  • Indefinite integral (antiderivative) for sum and difference.

Learning outcomes:

After this section, you will have learned to :

  • Interpret definite integrals as signed areas, that is, "the area above the \displaystyle x-axis" minus "the area below the \displaystyle x-axis".
  • Understand other interpretations of the definite integral, for example, density / mass, speed / displacement, power / charge , etc.
  • Determine an indefinite integral, or antiderivative, for \displaystyle x^\alpha, \displaystyle 1/x, \displaystyle e^{kx}, \displaystyle \cos kx, \displaystyle \sin kx and the sum / difference of such terms.
  • Calculate the area under the graph of a function.
  • Calculate the area between the graphs of two functions.
  • Recognise that not all functions have indefinite integrals that can be written as a closed analytical expression; be aware of examples such as \displaystyle e^{x^2} , \displaystyle (\sin x)/x, \displaystyle \sin \sin x, etc.

Area under the curve of a function

We have previously found that the gradient of a curve of a function is interesting: it gives us information about how the function changes and has great significance in many applications. In a similar way the area between the curve of a function and the x-axis is of importance. Of course, it is dependent on the curve's appearance and thus closely related to the function in question. It is easy to see that this area has practical significance in many different contexts.

If an object is moving, we can illustrate its speed v plotted against time t in a v,t-diagram. We can see in the figure below three different hypothetical examples:


[Image]

[Image]

[Image]

The object moves at a constant speed of 5. The object moves at a steady speed of 4 when an impact at t = 3 suddenly increases the speed to 6. The object is sliding down a sloping plane and has a linearly increasing speed.


The distance travelled is in each case

\displaystyle s(6) = 5\times 6 = 30\,\mbox{m},\quad
 s(6) = 4\times 3 + 6\times 3 = 30\,\mbox{m},\quad
 s(6) = \frac{6\times 6}{2} = 18\,\mbox{m}\,\mbox{.}

In each cases, you see that the distance travelled by the object is matched by the area under the curve.

More examples of what the area under a curve can symbolise are shown below.

Example 1


[Image]

[Image]

[Image]

A solar cell which has been exposed to light of power p will have received energy that is proportional to the area under the above graph. The force F applied to an object along the direction of its motion does work that is proportional to the area under the above graph. A capacitor that is charged by a current i will receive a charge which is proportional to the area under the above graph.


The notation for the definite integral.

In order to describe the area under the curve of a function in symbolic form one introduces the integral sign \displaystyle \,\smallint\, :

The definite integral of a positive function \displaystyle f(x) from \displaystyle a to \displaystyle b is understood to mean the area between the curve \displaystyle y=f(x) and the interval of the x-axis between \displaystyle x=a and \displaystyle x=b , and is written with the notation

\displaystyle \int_{a}^{\,b} f(x)\, dx\,\mbox{.}

The numbers \displaystyle a and \displaystyle b are called the lower and upper limits of integration respectively, \displaystyle f(x) is called the integrand and \displaystyle x the variable of integration.

Example 2

The area under the curve \displaystyle y=f(x) from \displaystyle x=a to \displaystyle x=c is equal to the area from \displaystyle x=a to \displaystyle x=b plus the area from \displaystyle x=b to \displaystyle x=c. This means that
\displaystyle \int_{a}^{\,b} f(x)\, dx + \int_{b}^{\,c} f(x)\, dx
 = \int_{a}^{\,c} f(x)\, dx\,\mbox{.}

[Image]

Example 3

For an object whose speed is changing according to the function \displaystyle v(t), the distance travelled after 10 s is characterised by the definite integral
\displaystyle s(10) = \int_{0}^{10} v(t)\, dt\,\mbox{.}

Note . We assume that speed and distance are measured using the same units of length.

[Image]

Example 4

Water is flowing into a tank at a rate of \displaystyle f(t) litre/s at the time \displaystyle t. The integral

\displaystyle \int_{9}^{10} f(t)\, dt

specifies the amount in litres which flows into the tank during the tenth second.

Example 5

Calculate the integrals

  1. \displaystyle \int_{0}^{4} 3 \, dx

    The definite integral can be interpreted as area under the curve (the line) \displaystyle y=3 going from \displaystyle x = 0 to \displaystyle x = 4, i.e. a rectangle with the base 4 and height 3,
    \displaystyle \int_{0}^{4} 3 \, dx = 4 \times 3 = 12\,\mbox{.}

[Image]

  1. \displaystyle \int_{2}^{5} \Bigl(\frac{x}{2} -1 \Bigr) \, dx

    The integral can be interpreted as the area under the line \displaystyle y=x/2-1 going from \displaystyle x = 2 to \displaystyle x = 5, i.e. a triangle with a base 3 and a height 1.5
    \displaystyle \int_{2}^{5} \Bigl(\frac{x}{2} -1 \Bigr) \, dx = \frac{3 \times 1\textrm{.}5}{2} = 2\textrm{.}25\,\mbox{.}

[Image]

  1. \displaystyle \int_{0}^{a} kx \, dx\,\mbox{}\quad where \displaystyle k>0\,.

    The integral can be interpreted as the area under the line \displaystyle y=kx going from \displaystyle x = 0 to \displaystyle x = a, that is a triangle with a base \displaystyle a and a height \displaystyle ka
    \displaystyle \int_{0}^{\,a} kx\,dx = \frac{a \times ka}{2} = \frac{ka^2}{2}\,\mbox{.}

[Image]


The antiderivative and the indefinite integral

The function \displaystyle F is an antiderivative (or primitive function) for \displaystyle f if \displaystyle F'(x) = f(x) in any interval. If \displaystyle F(x) is an antiderivative for \displaystyle f(x), it is clear that \displaystyle F(x) + C is as well, for any constant \displaystyle C. In addition, it can be shown that \displaystyle F(x) + C gives all possible antiderivatives of \displaystyle f(x); the expression \displaystyle F(x) + C is known as the indefinite integral of \displaystyle f, and is written

\displaystyle \int f(x)\, dx\,\mbox{.}

Exempel 6

  1. \displaystyle F(x) = x^3 + \cos x - 5 is an antiderivative of \displaystyle f(x) = 3x^2 - \sin x, because
    \displaystyle F'(x) = D\,(x^3+\cos x-5) = 3x^2-\sin x-0
         = f(x)\,\mbox{.}
    
  2. \displaystyle G(t) = e^{3t + 1} + \ln t is an antiderivative of \displaystyle g(t)= 3 e^{3t + 1} + 1/t, because
    \displaystyle G'(t) = D\,\bigl(e^{3t+1}+\ln t\bigr)
         = e^{3t+1}\times 3+\frac{1}{t} = g(t)\,\mbox{.}
    
  3. \displaystyle F(x) = \frac{1}{4}x^4 - x + C\,, where \displaystyle C is an arbitrary constant, gives the indefinite integral of \displaystyle f(x) = x^3 - 1.


The relationship between definite and indefinite integrals

We have previously found that the area under the curve of a function, i.e. its definite integral, is dependent on the form of the curve. It turns out that this dependence makes use of the antiderivative, which also allows us, in certain circumstances, to calculate such an area exactly.

Suppose that \displaystyle f is a continuous function in an interval. The value of the integral \displaystyle \ \int_{a}^{b} f(x) \, dx\ then is dependent on the limits of integration \displaystyle a and \displaystyle b, but if one lets \displaystyle a have a fixed value and \displaystyle x be the upper limit, the integral will depend only on the upper limit. To clarify this, we prefer to use \displaystyle t as the variable of integration:

[Image]

\displaystyle A(x) = \int_{a}^{\,x} f(t) \, dt\,\mbox{.}

We shall now show that \displaystyle A is in fact an antiderivative of \displaystyle f.

[Image]

The total area under the curve from \displaystyle t=a to \displaystyle t=x+h can be written as \displaystyle A(x+h) and is approximately equal to the area up to \displaystyle t=x plus the area of the column between \displaystyle t=x and \displaystyle t=x+h, i.e. .

\displaystyle A(x+h)\approx A(x)+h\, f(c)

where \displaystyle c is a number between \displaystyle x and \displaystyle x+h. This expression can be rewriten as

\displaystyle \frac{A(x+h)-A(x)}{h} = f(c)\,\mbox{.}

If we let \displaystyle h \rightarrow 0 the the left-hand side tends towards \displaystyle A'(x) and the right-hand side tends towards \displaystyle f(x) , i.e. .

\displaystyle A'(x) = f(x)\,\mbox{.}

Thus the function \displaystyle A(x) is an antiderivative of \displaystyle f(x).


Evaluating integrals

In order to use antiderivatives to calculate a definite integral, we note first that if \displaystyle F is an antiderivative of \displaystyle f then

\displaystyle \int_{a}^{\,b} f(t) \, dt = F(b) + C

where the constant \displaystyle C must be chosen so that the right-hand side is zero when \displaystyle b=a, i.e.

\displaystyle \int_{a}^{\,a} f(t) \, dt = F(a) + C = 0

which gives that \displaystyle C=-F(a). If we summarise, we have that

\displaystyle \int_{a}^{\,b} f(t) \, dt
 = F(b) - F(a)\,\mbox{.}

We can, of course, just as easily, choose \displaystyle x as the variable of integration and write

\displaystyle \int_{a}^{\,b} f(x) \, dx
 = F(b) - F(a)\,\mbox{.}

Evaluating a definite integral is performed in two steps. First one determines an antiderivative, and then inserts the limits of integration. The usual way of writing this is as follows,

\displaystyle \int_{a}^{\,b} f(x) \, dx
 = \Bigl[\,F(x)\,\Bigr]_{a}^{b} = F(b) - F(a)\,\mbox{.}


Example 7

The area bounded by the curve \displaystyle y=2x - x^2 and the x-axis can be calculated by using the integral

\displaystyle \int_{0}^{2} (2x-x^2) \, dx\,\mbox{.}

Since \displaystyle x^2-x^3/3 is an antiderivative of the integrand, the integral's value is

\displaystyle \begin{align*}\int_{0}^{2} (2x-x^2) \, dx &= \Bigl[\,x^2 - {\textstyle\frac{1}{3}}x^3\, \Bigr]_{0}^{2}\\[4pt] &= \bigl( 2^2 - \tfrac{1}{3}2^3\bigr) - \bigl(0^2-\tfrac{1}{3}0^3\bigr)\\[4pt] &= 4 - \tfrac{8}{3} = \tfrac{4}{3}\,\mbox{.}\end{align*}

The area is\displaystyle \frac{4}{3} u.a.

[Image]

Note: The value of the integral contains no unit. In practical applications, however, the area may have a unit.


Antidifferentiation

To differentiate common functions is not an insurmountable problem: there are general methods for doing this. To perform the reverse operation - that is, find an antiderivative (or an indefinite integral) for a given function - is much more difficult, however, and in some cases impossible! There is no systematic method that works everywhere, but by exploiting the usual rules of differentiation "in the opposite direction" and also by learning a number of special techniques and tricks one can tackle a large number of the functions that turn up.

The usual rules of differentiation give

\displaystyle \begin{align*}\int x^n \, dx &= \frac{x^{n+1}}{n+1} + C \quad \text{where }\ n \ne -1\\[6pt] \int x^{-1} \, dx &= \ln |x| + C\\[6pt] \int e^x \, dx &= e^x + C\\[6pt] \int \cos x \, dx &= \sin x + C\\[6pt] \int \sin x \, dx &= -\cos x + C \end{align*}

Example 8

  1. \displaystyle \int (x^4 - 2x^3 + 4x - 7)\,dx = \frac{x^5}{5} - \frac{2x^4}{4} + \frac{4x^2}{2} - 7x + C
    \displaystyle \phantom{\int (x^4 - 2x^3 + 4x - 7)\,dx}{} = \frac{x^5}{5} - \frac{x^4}{2} + 2x^2 - 7x + C
  2. \displaystyle \int \Bigl(\frac{3}{x^2} -\frac{1}{2x^3} \Bigr) dx = \int \Bigl( 3x^{-2} - \frac{1}{2} x^{-3} \Bigr) dx = \frac{3x^{-1}}{-1} - \frac{1}{2} \, \frac{x^{-2}}{(-2)} + C
    \displaystyle \phantom{\int \Bigl(\frac{3}{x^2} -\frac{1}{2x^3} \Bigr) dx}{} = - 3x^{-1} + \tfrac{1}{4}x^{-2} + C = -\frac{3}{x} + \frac{1}{4x^2} + C\vphantom{\Biggl(}
  3. \displaystyle \int \frac{2}{3x} \,dx = \int \frac{2}{3} \, \frac{1}{x} \, dx = \tfrac{2}{3} \ln |x| + C
  4. \displaystyle \int ( e^x - \cos x - \sin x ) \, dx = e^x - \sin x + \cos x +C


Compensating for the ”inner derivative”

When differentiating a composite function one makes use of the chain rule, which means that one must multiply by the inner derivative. If the inner function is linear, then the inner derivative is a constant. Thus when integrating such a composite function, one must divide by the inner derivative as a sort of compensation.

Example 9

  1. \displaystyle \int e^{3x} \, dx = \frac{e^{3x}}{3} + C
  2. \displaystyle \int \sin 5x \, dx = - \frac{ \cos 5x}{5} + C
  3. \displaystyle \int (2x +1)^4 \, dx = \frac{(2x+1)^5}{5 \times 2} + C

Example 10

  1. \displaystyle \int \sin kx \, dx = - \frac{\cos kx}{k} + C
  2. \displaystyle \int \cos kx \, dx = \frac{\sin kx }{k} + C
  3. \displaystyle \int e^{kx} \, dx = \displaystyle \frac{e^{kx}}{k} + C

Note that this way to compensate for the inner derivative only works if the inner derivative is a constant.


Rules for evaluating integrals

Using the way integration has been defined here, it is easy to show the following properties of integration:

  1. \displaystyle \int_{b}^{\,a} f(x) \, dx = - \int_{a}^{\,b} f(x) \, dx\,\mbox{,}\vphantom{\Biggl(}
  2. \displaystyle \int_{a}^{\,b} f(x) \, dx + \int_{a}^{\,b} g(x) \, dx = \int_{a}^{\,b} (f(x) + g(x)) \, dx\,\mbox{,}\vphantom{\Biggl(}
  3. \displaystyle \int_{a}^{\,b} k \, f(x)\, dx = k \int_{a}^{\,b} f(x)\, dx\,\mbox{,}\vphantom{\Biggl(}
  4. \displaystyle \int_{a}^{\,b} f(x) \, dx + \int_{b}^{\,c} f(x)\, dx = \int_{a}^{\,c} f(x)\, dx\,\mbox{.}

Moreover, areas below the x-axis are subtracted, that is, if the curve of the function lies below the x-axis in a region, the integral has a negative value in this region:

\displaystyle \begin{align*}A_1 &= \int_{a}^{\,b} f(x)\, dx,\\[6pt] A_2 &= -\int_{b}^{\,c} f(x)\, dx\,\mbox{.} \end{align*}

[Image]

The total area is \displaystyle \ A_1 + A_2 = \int_{a}^{\,b} f(x)\, dx - \int_{b}^{\,c} f(x)\, dx\,.

Note . The value of a definite integral can be negative, while an area always has a positive value.


Example 11

  1. \displaystyle \int_{1}^{2} (x^3 - 3x^2 + 2x + 1) \, dx + \int_{1}^{2} 2 \, dx =\int_{1}^{2} (x^3 - 3x^2 + 2x + 1+2) \, dx
    \displaystyle \qquad{}= \Bigl[\,\tfrac{1}{4}x^4 - x^3 + x^2 + 3x\,\Bigr]_{1}^{2} \vphantom{\Biggr)^2}
    \displaystyle \qquad{}= \bigl(\tfrac{1}{4}\times 2^4-2^3+2^2+3\times 2\bigr) - \bigl(\tfrac{1}{4}\times 1^4 - 1^3 + 1^2 + 3\times 1\bigr)\vphantom{\Biggr)^2}
    \displaystyle \qquad{}=6-3-\tfrac{1}{4} = \tfrac{11}{4}

    [Image]

    The diagram on the left shows the area under the graph for f(x) = x³ - 3x² + 2x + 1 and the middle diagram shows the area under the graph for g(x) = 2. In the diagram on the right these areas are summed and give the area under the graph for f(x) + g(x).


  1. \displaystyle \int_{1}^{3} (x^2/2 - 2x) \, dx + \int_{1}^{3} (2x - x^2/2 + 3/2) \, dx = \int_{1}^{3} 3/2 \, dx
    \displaystyle \qquad{} = \Bigl[\,\tfrac{3}{2}x\,\Bigr]_{1}^{3} = \tfrac{3}{2}\times 3 - \tfrac{3}{2}\times 1 = 3

    [Image]

    The graph to f(x) = x²/2 - 2x (diagram on the left) and the graph to g(x) = 2x - x²/2 + 3/2 (diagram in the middle) are inverted with respect to each other about the line y = 3/4 (dotted line in the diagrams). This means the sum f(x) + g(x) is equal to 3/2. and is a constant. Thus the sum of the integrals is equal to the area of a rectangle with base  2 and height 3/2 (diagram on the right).


  1. \displaystyle \int_{1}^{2} \frac{4x^2 - 2}{3x} \, dx = \int_{1}^{2} \frac{2(2x^2-1)}{3x} \, dx = \frac{2}{3} \int_{1}^{2} \frac{2x^2 - 1}{x} \, dx \vphantom{\Biggl(}
    \displaystyle \qquad{}= \frac{2}{3} \int_{1}^{2} \Bigl(2x - \frac{1}{x}\Bigr) \, dx = \frac{2}{3} \Bigl[\,x^2 - \ln x\,\Bigr]_{1}^{2} \vphantom{\Biggl(}
    \displaystyle \qquad{}= \frac {2}{3}\Bigl((4- \ln 2) - (1 - \ln 1)\Bigr) = \tfrac{2}{3}(3 - \ln 2) = 2 - \tfrac{2}{3}\ln 2


  1. \displaystyle \int_{-1}^{2} (x^2 - 1) \, dx = \Bigl[\,\frac{x^3}{3} - x\,\Bigl]_{-1}^{2} = \bigl(\tfrac{8}{3} - 2\bigr) - \bigl(\tfrac{-1}{3} + 1 \bigr) = 0

    [Image]

    The figure shows the graph of f(x) = x² - 1 and the calculation above shows that the shaded area below the x-axis is equal to the shaded area above the x-axis.


Area between curves

If \displaystyle f(x) \ge g(x) in an interval \displaystyle a\le x\le b then the area between the curves is given by

\displaystyle \int_{a}^{b} f(x) \, dx
 - \int_{a}^{b} g(x) \, dx\,\mbox{,}

which can be simplified to

\displaystyle \int_{a}^{b} (f(x) - g(x)) \, dx\,\mbox{.}

[Image]

If f(x) and g(x) take positive values and f(x) is greater than g(x), the area between the graphs of f and g (the figure on the left) can be obtained as the difference between the area under the graph f (figure in the middle) and the area under the graph g (the figure on the right).


Note that it does not matter whether \displaystyle f(x) < 0 or \displaystyle g(x) < 0 as long as \displaystyle f(x) \ge g(x). The value of the area between the curves is independent of whether the curves are above or below the x-axis, as the following figures illustrate:

[Image]

The area between the two graphs is not affected if the graphs are moved in the y-direction. The area between the graphs of f(x) and g(x) (figure on the left) is equal to the area between the graphs of f(x) - 3 and g(x) - 3 (the figure in the middle), as well as the area between the graphs of f(x) - 6 and g(x) - 6 (figure on the right).

Example 12

Calculate the area bounded by the curves \displaystyle y=e^x + 1 and \displaystyle y=1 - x^2/2 and the lines \displaystyle x = –1 and \displaystyle x = 1.

Since \displaystyle e^x + 1 > 1 - x^2/2 in the whole interval the area in question is given by

\displaystyle \begin{align*} &\int_{-1}^{1} (e^x + 1) \, dx - \int_{-1}^{1} \Bigl( 1- \frac{x^2}{2}\Bigr) \, dx \vphantom{\Biggl(}\\ &\qquad{}= \int_{-1}^{1} \Bigl( e^x + \frac{x^2}{2} \Bigr) \, dx \vphantom{\Biggl(}\\ &\qquad{}= \Bigl[\,e^x + \frac{x^3}{6}\,\Bigr]_{-1}^{1} \vphantom{\Biggl(}\\ &\qquad{}= \Bigl( e^1 + \frac{1^3}{6} \Bigr) - \Bigl( e^{-1} + \frac{(-1)^3}{6} \Bigr)\vphantom{\Biggl(}\\ &\qquad{}= e - \frac{1}{e} + \frac{1}{3} \ \text{u.a.}\end{align*}

[Image]

Example 13

Calculate the area of the finite region bounded by the curves \displaystyle y= x^2 and \displaystyle y= \sqrt[\scriptstyle 3]{x}.

The curves intersect at the points where their y-values are equal

\displaystyle \begin{align*} &x^2 = x^{1/3} \quad \Leftrightarrow \quad x^6 = x\quad \Leftrightarrow \quad x(x^5 - 1) = 0\\ &\quad \Leftrightarrow \quad x=0 \quad \text{or}\quad x=1\,\mbox{.}\end{align*}
Between \displaystyle x=0 and \displaystyle x=1, \displaystyle \sqrt[\scriptstyle 3]{x}>x^2 is true, thus the area is
\displaystyle \begin{align*}\int_{0}^{1} \bigl( x^{1/3} - x^2 \bigr) \, dx &= \Bigl[\,\frac{ x^{4/3}}{4/3} - \frac{x^3}{3}\,\Bigr]_{0}^{1}\\

&{}= \Bigl[\,\frac{3x^{4/3}}{4} - \frac{x^3}{3}\, \Bigr]_{0}^{1}\\[4pt] &{}= \tfrac{3}{4} - \tfrac{1}{3} - (0-0)\\[4pt] &{}= \tfrac{5}{12}\ \text{u.a.}\end{align*}

[Image]

Example 14

Calculate the area of the region bounded by the curve \displaystyle y=\frac{1}{x^2}and the lines \displaystyle y=x and \displaystyle y = 2.

In the figure on the right, the curve and the two lines have been sketched and then we see that the region can be divided into two sub-regions, each of which is located between two curves. The total area is the sum of the integrals

\displaystyle A_1 = \int_{a}^{\,b} (2 - \frac{1}{x^2}) \, dx
 \quad\text{and}\quad A_2 = \int_{b}^{\,c} (2- x) \, dx\,\mbox{.}

We first determine the points of intersection \displaystyle x=a, \displaystyle x=b and \displaystyle x=c:

[Image]

  • The point of intersection \displaystyle x=a is obtained from the equation
\displaystyle \frac{1}{x^2} = 2
 \quad \Leftrightarrow \quad x^2 = \frac{1}{2}
 \quad \Leftrightarrow \quad x = \pm \frac{1}{\sqrt{2}}\,\mbox{.}
(The negative root, however, is not relevant.)
  • The point of intersection \displaystyle x=b is obtained from the equation
\displaystyle \frac{1}{x^2} = x
 \quad \Leftrightarrow \quad x^3 = 1
 \quad \Leftrightarrow \quad x=1\,\mbox{.}
  • The point of intersection \displaystyle x=c is obtained from the equation \displaystyle x = 2.

The integrals are therefore

\displaystyle \begin{align*} A_1 &= \int_{1/\sqrt{2}}^{1} \Bigl(2 - \frac{1}{x^2}\Bigr) \, dx = \int_{1/\sqrt{2}}^{1} \bigl(2 - x ^{-2}\bigr) \, dx = \Bigl[\,2x-\frac{x^{-1}}{-1}\,\Bigr]_{1/\sqrt{2}}^{1}\\[4pt] &= \Bigl[\,2x + \frac{1}{x}\,\Bigr]_{1/\sqrt{2}}^{1} = (2+ 1) - \Bigl( \frac{2}{\sqrt{2}} + \sqrt{2}\,\Bigr) = 3 - 2\sqrt{2}\,\mbox{,}\\[4pt] A_2 &= \int_{1}^{2} (2 - x) \, dx = \Bigl[\,2x - \frac{x^2}{2}\,\Bigr]_{1}^{2} = (4-2) - \Bigl(2- \frac{1}{2}\Bigr) = \frac{1}{2}\,\mbox{.}

\end{align*}

The total area is

\displaystyle A_1 + A_2 = 3 - 2\sqrt{2} + \tfrac{1}{2} = \tfrac{7}{2} - 2\sqrt{2}\ \text{u.a.}