3.2 Polar form
From Förberedande kurs i matematik 2
m (Regenerate images and tabs) |
(Edited for UK idiom and terminology: note "Pythagoras' theorem" for "the Pythag) |
||
(29 intermediate revisions not shown.) | |||
Line 2: | Line 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #797979" width="5px" | | | style="border-bottom:1px solid #797979" width="5px" | | ||
- | {{ | + | {{Selected tab|[[3.2 Polar form|Theory]]}} |
- | {{ | + | {{Not selected tab|[[3.2 Exercises|Exercises]]}} |
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Contents:''' |
- | * | + | * The complex plane |
- | * Addition | + | * Addition and subtraction in the complex plane |
- | * | + | * Modulus and argument |
- | * | + | * Polar form |
- | * | + | * Multiplication and division in polar form |
- | * | + | * Multiplication with ''i'' in the complex plane |
}} | }} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Learning outcomes:''' |
- | + | After this section, you will have learnt: | |
- | + | ||
- | + | ||
- | + | ||
+ | *A geometric understanding of complex numbers and their arithmetic operations in the plane. | ||
+ | * To be able to convert the complex number between the form ''a'' + ''ib'' and polar form. | ||
}} | }} | ||
- | == | + | == The complex plane == |
- | + | As a complex number <math>z=a+bi</math> consists of a real part <math>a</math> and an imaginary part <math>b</math>, one can consider <math>z</math> to be an ordered pair of numbers <math>(a,b)</math> and interpreted as a point in a coordinate system. We thus construct a coordinate system by drawing an imaginary axis ( a number axis having a unit <math>i</math>) perpendicular to a real axis (the real-number axis). We can now designate each complex number as a point in this coordinate system, and conversely each point defines a unique complex number. | |
- | + | ||
- | <center>{{:3.2 - | + | <center>{{:3.2 - Figure - The complex plane}}</center> |
- | + | This geometric interpretation of the complex numbers is called the ''complex plane'' (sometimes the ''Argand diagram''). | |
- | '' | + | ''Note:'' The real numbers, that is all complex numbers with imaginary part 0, lie along the real axis. One can therefore regard the extension of the number system from <math>\mathbb{R}</math> (the real numbers) to <math>\mathbb{C}</math> (the complex numbers) to mean that one adjoins an extra dimension to the completely filled real-number axis . |
- | Addition | + | Addition of complex numbers has a quite natural and simple interpretation in the complex plane and is geometrically the same method as vector addition. Subtraction can be seen as the addition of the corresponding negative number, that is <math>z-w=z+(-w)</math>. |
{| width="100%" align="center" | {| width="100%" align="center" | ||
| width="10%" | | | width="10%" | | ||
- | | width="35%" align="center" |{{:3.2 - | + | | width="35%" align="center" |{{:3.2 - Figure - Addition of complex numbers}} |
| width="10%" | | | width="10%" | | ||
- | | width="35%" align="center" |{{:3.2 - | + | | width="35%" align="center" |{{:3.2 - Figure - Subtraction of complex numbers}} |
| width="10%" | | | width="10%" | | ||
|- | |- | ||
|| | || | ||
- | | valign="top" |<small> | + | | valign="top" |<small> Geometrically the number ''z'' + ''w'' is obtained by considering a hypothetical line segment from 0 to ''w'' which is parallel-displaced so that its initial point at 0 is moved to z. Then this line segments terminal point w lands at the point ''z'' + ''w''.</small> |
|| | || | ||
- | | valign="top" |<small> | + | | valign="top" |<small>The subtraction ''z'' - ''w'' can be written as ''z'' + (-''w'') and can therefore be interpreted geometrically as a hypothetical line segment from 0 to -''w'' is parallel-displaced so that its initial point at 0 is moved to ''z''. Then this line segments terminal point -''w'' lands at the point ''z'' - ''w''.</small> |
|| | || | ||
|} | |} | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 1''' |
- | + | Given <math>z=2+i</math> and <math>w=-3-i</math>. Indicate <math>z</math>, <math>w</math>, <math>\overline{z}</math>, <math>\overline{z}-\overline{w}</math> and <math>z-w</math> in the complex plane. | |
{| width="100%" | {| width="100%" | ||
- | | width="100%" | | + | | width="100%" |We have that |
*<math>\overline{z}=2-i\,</math>, | *<math>\overline{z}=2-i\,</math>, | ||
*<math>\overline{w}=-3+i\,</math>, | *<math>\overline{w}=-3+i\,</math>, | ||
*<math>z-w=2+i-(-3-i)</math><br/><math>\phantom{z-w}{}=5+2i\,</math>, | *<math>z-w=2+i-(-3-i)</math><br/><math>\phantom{z-w}{}=5+2i\,</math>, | ||
*<math>\overline{z} -\overline{w} = 2-i -(-3+i)</math><br/><math>\phantom{\overline{z} -\overline{w}}{}=5-2i\quad ({}=\overline{z-w})\,</math>. | *<math>\overline{z} -\overline{w} = 2-i -(-3+i)</math><br/><math>\phantom{\overline{z} -\overline{w}}{}=5-2i\quad ({}=\overline{z-w})\,</math>. | ||
- | ||{{:3.2 - | + | ||{{:3.2 - Figure - The complex plane with z, w, z*, z - w and z* - w* marked}} |
|} | |} | ||
- | + | Note that complex conjugate pairs are mirror images in the real axis. | |
- | + | ||
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 2''' |
- | + | Indicate in the complex plane all numbers <math>z</math> that meet the following conditions: | |
<ol type="a"> | <ol type="a"> | ||
<li><math>\mathop{\rm Re} z \ge 3\,</math>,</li> | <li><math>\mathop{\rm Re} z \ge 3\,</math>,</li> | ||
Line 87: | Line 84: | ||
</ol> | </ol> | ||
- | + | The first inequality defines the region in the figure on the left below, and the second inequality defines the region in the figure on the right below. | |
{| align="center" width="80%" | {| align="center" width="80%" | ||
- | ||{{:3.2 - | + | ||{{:3.2 - Figure - The region Re z ≥ 3}} |
| width="5%" | | | width="5%" | | ||
- | ||{{:3.2 - | + | ||{{:3.2 - Figure - The region -1 less than Im z ≤ 2}} |
|- | |- | ||
- | | valign="top" |<small> | + | | valign="top" |<small> All the numbers that satisfy Re ''z'' ≥ 3 have a real part that is greater than or equal to 3. These figures form the shaded semi-plane in the figure. </small> |
|| | || | ||
- | | valign="top" |<small> | + | | valign="top" |<small>Numbers that satisfy -1 < Im ''z'' ≤ 2 have an imaginary part that is between -1 and 2. These numbers are therefore in the ribbon-like region marked in the figure. The lower horizontal line is dotted and that means that points on that line do not belong to the shaded region. </small> |
|} | |} | ||
</div> | </div> | ||
- | == | + | == Absolute value == |
- | + | The real numbers can be arranged in order of magnitude; that is, we can determine whether one real number is greater than another, which is the same as determining whether it lies further to the right on the real number line. | |
- | + | For the complex numbers this is not possible. We cannot decide which is the larger of, say, <math>z=1-i</math> and <math>w=-1+i</math> . With the help of the concept of ''absolute value'' however, we can define a measure of the size of a complex number. | |
- | + | For a complex number <math>z=a+ib</math> the absolute value or modulus <math>|\,z\,|</math> is defined as <br\><br\> | |
- | <div class="regel">{{ | + | <div class="regel">{{Displayed math||<math>|\,z\,|=\sqrt{a^2+b^2}\,\mbox{.}</math>}}</div> |
- | + | We see that <math>|\,z\,|</math> is a real number, and that <math>|\,z\,|\ge 0</math>. For a real number <math>b = 0</math> and then <math>|\,z\,|=\sqrt{a^2}=|\,a\,|</math>, which is consistent with the usual definition of an absolute value (or modulus) of a real number. Geometrically the absolute value is the distance from the number <math>z=a+ib</math> (the point <math>(a, b)</math>) to <math>z = 0</math> (origin), according to Pythagoras' theorem. | |
- | <center>{{:3.2 - | + | <center>{{:3.2 - Figure - The modulus of z}}</center> |
- | == | + | == Distance between complex numbers == |
- | + | With the help of the formula for the distance between points in a coordinate system one can obtain an important and useful interpretation of the absolute value. The distance <math>s</math> between the two complex numbers <math>z=a+ib</math> and <math>w=c+id</math> (see fig.) can with the help of the formula for distance be written as | |
- | <div class="regel">{{ | + | <div class="regel">{{Displayed math||<math>s=\sqrt{(a-c)^2+(b-d)^2}\,\mbox{.}</math>}}</div> |
- | <center>{{:3.2 - | + | <center>{{:3.2 - Figure - The distance between z and w}}</center> |
- | + | Since <math>z-w=(a-c)+i(b-d)</math>, one gets | |
- | <center><math>|\,z-w\,|=\sqrt{(a-c)^2+(b-d)^2}={}</math> | + | <center><math>|\,z-w\,|=\sqrt{(a-c)^2+(b-d)^2}={}</math> distance between the numbers <math>z</math> and <math>w</math>.</center> |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 3''' |
- | + | Indicate the following sets in the complex plane: | |
{| width="100%" | {| width="100%" | ||
Line 145: | Line 142: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The equation describes all numbers whose distance to the origin is 2. These numbers describe in the complex plane a circle with radius 2 and its centre at the origin. </li> | |
</ol> | </ol> | ||
| width="5%" | | | width="5%" | | ||
- | ||{{:3.2 - | + | ||{{:3.2 - Figure - The circle ∣z∣ = 2}} |
|} | |} | ||
Line 157: | Line 154: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | This equation is satisfied by all the numbers, whose distance from the number 2 is equal to 1, i.e. a circle of radius 1 and with its centre at <math>z = 2</math>.</li> | |
</ol> | </ol> | ||
| width="5%" | | | width="5%" | | ||
- | ||{{:3.2 - | + | ||{{:3.2 - Figure - The circle ∣z - 2∣ = 1}} |
|} | |} | ||
Line 169: | Line 166: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The left-hand side can be written <math>|\,z-(-2+i)\,|</math>, which means all the numbers at a distance <math>{}\le 2</math> from the number <math>-2+i</math>, that is a circular disc a with a radius of 2 and its centre at <math>-2+i</math>.</li> | |
</ol> | </ol> | ||
| width="5%" | | | width="5%" | | ||
- | ||{{:3.2 - | + | ||{{:3.2 - Figure - The disk ∣z + 2 - i∣ ≤ 2}} |
|} | |} | ||
Line 181: | Line 178: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The set is given by any number whose distance from <math>z=2+3i</math> is between <math>\frac{1}{2}</math> and <math>1</math>.</li> | |
</ol> | </ol> | ||
| width="5%" | | | width="5%" | | ||
- | ||{{:3.2 - | + | ||{{:3.2 - Figure - The circle ring 1/2 ≤ ∣z - (2 + 3i)∣ ≤ 1}} |
|} | |} | ||
Line 190: | Line 187: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 4''' |
- | + | Indicate in the complex plane all numbers <math>z</math> satisfying the following conditions: | |
Line 200: | Line 197: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The first inequality gives the points on and inside a circle with radius 3 and center at <math>2i</math>. The second inequality is a vertical strip of points with their real part between 1 and 2. The area satisfying both inequalities is given by the points which lie both within the circle and within the strip. | |
</li> | </li> | ||
<br/> | <br/> | ||
Line 206: | Line 203: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The equation can be written as <math>|\,z-(-1)\,|=|\,z-2\,|</math>. This shows then that <math>z</math> should be at an equal distance from <math>-1</math> and <math>2</math>. This condition is met by all the numbers <math>z</math> that have a real part <math>1/2</math>. | |
</li> | </li> | ||
</ol> | </ol> | ||
{| align="center" width="80%" | {| align="center" width="80%" | ||
- | ||{{:3.2 - | + | ||{{:3.2 - Figure - The region ∣z - 2i∣ ≤ 3 and 1 ≤ Re z ≤ 2}} |
| width="5%" | | | width="5%" | | ||
- | ||{{:3.2 - | + | ||{{:3.2 - Figure - The region ∣z + 1∣ = ∣z - 2∣}} |
|- | |- | ||
- | ||<small> | + | ||<small> The shaded region consists of the points that satisfy the inequalities |''z'' - 2i| ≤ 3 and 1 ≤ Re ''z'' ≤ 2.</small> |
|| | || | ||
- | ||<small> | + | ||<small>The points that satisfy the equation |''z'' + 1| = |''z'' - 2| lie on the line with real part equal to 1/2.</small> |
|} | |} | ||
Line 223: | Line 220: | ||
- | == | + | == Polar form == |
- | + | ||
- | + | ||
+ | Instead of representing a complex number <math>z=x+iy</math> by its rectangular coordinates <math>(x,y)</math> one can use polar coordinates. This means that one represents a numbers location in the complex plane by its distance <math>r</math> to the origin, and the angle <math>\alpha</math>, made by the positive real-line axis and the line from the origin to the number (see the figure). | ||
- | <center>{{:3.2 - | + | <center>{{:3.2 - Figure - Polar form of z}}</center> |
- | + | Since <math>\,\cos\alpha = x/r\,</math> and <math>\,\sin\alpha = y/r\,</math> then <math>\,x = r\cos\alpha\,</math> and <math>\,y= r\sin\alpha</math>. The number <math>z=x+iy</math> can be written as | |
- | <div class="regel">{{ | + | <div class="regel">{{Displayed math||<math>z=r\cos\alpha + i\,r\sin\alpha = r(\cos\alpha + i\,\sin\alpha)\,\mbox{,}</math>}}</div> |
- | + | which is called the ''polar form'' of a complex number <math>z</math>. The angle <math>\alpha</math> is called the ''argument'' of <math>z</math> and is written | |
- | <div class="regel">{{ | + | <div class="regel">{{Displayed math||<math>\alpha=\arg\,z\,\mbox{.}</math>}}</div> |
- | + | The angle <math>\alpha</math>, for example, can be determined by solving the equation <math>\tan\alpha=y/x</math>. This equation, however, has a number of solutions, so we must ensure that we choose the solution <math>\alpha</math> that allows <math>z= r(\cos\alpha + i\sin\alpha)</math> to end up in the correct quadrant. | |
- | + | The argument of a complex number is not uniquely determined because angles that differ by <math>2\pi</math> indicate the same direction in the complex plane. Normally, one uses for the argument the angle between 0 and <math>2\pi</math> or between <math>-\pi</math> and <math>\pi</math>. | |
- | + | The real number <math>r</math>, the distance to the origin as we have already seen, is the absolute value of <math>z</math>, | |
- | <div class="regel">{{ | + | <div class="regel">{{Displayed math||<math>r=\sqrt{x^2+y^2}=|\,z\,|\,\mbox{.}</math>}}</div> |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 5''' |
- | + | Write the following complex numbers in polar form: | |
<ol type="a"> | <ol type="a"> | ||
<li><math>\,\,-3</math> | <li><math>\,\,-3</math> | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | We have that <math>|\,-3\,|=3</math> and <math>\arg (-3)=\pi</math>, which means that <math>\ -3=3(\cos\pi+i\,\sin\pi)</math>. | |
</li> | </li> | ||
Line 263: | Line 259: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | We have that <math>|\,i\,|=1</math> and <math>\arg i = \pi/2</math> which in polar form is <math>\ i=\cos(\pi/2)+i\,\sin(\pi/2)\,</math>. | |
</li> | </li> | ||
Line 269: | Line 265: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The formula for a the absolute value of a complex number gives <math>|\,1-i\,|=\sqrt{1^2+(-1)^2}=\sqrt{2}</math>. The complex number lies in the fourth quadrant and has an angle <math>\pi/4</math> with the positive real axis, which gives <math>\arg (1-i)=2\pi-\pi/4=7\pi/4</math>. Thus <math>\ 1-i=\sqrt{2}\,\bigl(\cos(7\pi/4)+i\sin(7\pi/4)\,\bigr)</math>. | |
</li> | </li> | ||
Line 275: | Line 271: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The absolute value is the easiest to calculate | |
- | {{ | + | {{Displayed math||<math>|\,2\sqrt{3}+2i\,|=\sqrt{(2\sqrt{3}\,)^2+2^2}=\sqrt{16}=4\,\mbox{.}</math>}} |
- | + | If we call the argument <math>\alpha</math> then it satisfies the relationship | |
- | {{ | + | {{Displayed math||<math>\tan\alpha=\frac{2}{2\sqrt{3}}=\frac{1}{\sqrt{3}}</math>}} |
- | + | and since the number is in the first quadrant (positive real and imaginary parts) one gets <math>\alpha=\pi/6</math> and we have that | |
- | {{ | + | {{Displayed math||<math>2\sqrt{3}+2i=4\bigl(\cos\frac{\pi}{6}+i\,\sin\frac{\pi}{6}\bigr)\,\mbox{.}</math>}} |
</li> | </li> | ||
</ol> | </ol> | ||
- | <center>{{:3.2 - | + | <center>{{:3.2 - Figure - The complex plane with -3, i, 1 - i and 2√3 + 2i marked}}</center> |
</div> | </div> | ||
- | == | + | == Multiplication and division of polar forms == |
- | + | The big advantage of having the complex numbers written in polar form is that multiplication and division then becomes very easy to perform. For arbitrary complex numbers <math>z=|\,z\,|\,(\cos\alpha+i\sin\alpha)</math> and <math>w=|\,w\,|\,(\cos\beta+i\sin\beta)</math>, it can be shown using the trigonometric formulas for addition that | |
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>\begin{align*}z\, w&=|\,z\,|\,|\,w\,|\,\bigl(\cos(\alpha+\beta)+i\,\sin(\alpha+\beta)\bigr)\,\mbox{,}\\[4pt] \frac{z}{w}&=\frac{|z|}{|w|}\bigl(\cos(\alpha-\beta)+i\,\sin(\alpha-\beta)\bigr)\,\mbox{.}\end{align*}</math>}} |
</div> | </div> | ||
- | + | When multiplying complex numbers, the absolute values ''are multiplied'', while the arguments ''are added''. For division of complex numbers, absolute values ''are divided'' and the arguments ''subtracted''. This can be summarised as: | |
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>|\,z\, w\,|=|\,z\,|\, |\,w\,|\quad \mbox{and}\quad \arg(z\, w)=\arg\,z + \arg\,w\,\mbox{,}</math>}} |
- | {{ | + | {{Displayed math||<math>\Bigl|\,\frac{z}{w}\,\Bigr|=\frac{|\,z\,|}{|\,w\,|}\quad\quad\quad\; \mbox{ and}\quad \arg\Bigl(\frac{z}{w}\Bigr)=\arg \,z - \arg\,w\,\mbox{.}</math>}} |
</div> | </div> | ||
- | + | In the complex plane this means that multiplication of <math>z</math> with <math>w</math> causes <math>z</math> to be stretched by a factor <math>|\,w\,|</math> and rotated anticlockwise by an angle <math>\arg\,w</math>. | |
{| width="80%" align="center" | {| width="80%" align="center" | ||
- | ||{{:3.2 - | + | ||{{:3.2 - Figure - Complex numbers z and w with arguments α and β}} |
| width="5%" | | | width="5%" | | ||
- | ||{{:3.2 - | + | ||{{:3.2 - Figure - The complex product zw with argument α + β}} |
|} | |} | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 6''' |
- | + | Simplify the following expressions by writing them in polar form: | |
<ol type="a"> | <ol type="a"> | ||
<li><math>\Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/ | <li><math>\Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/ | ||
Line 324: | Line 320: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | We write the numerator and denominator in polar form | |
- | {{ | + | {{Displayed math||<math>\begin{align*}\frac{1}{\sqrt2} -\frac{i}{\sqrt2} &= 1\times\Bigl(\cos\frac{7\pi}{4}+i\,\sin\frac{7\pi}{4}\Bigr)\\[4pt] -\frac{1}{\sqrt2} +\frac{i}{\sqrt2} &= 1\times\Bigl(\cos\frac{3\pi}{4}+i\,\sin\frac{3\pi}{4}\Bigr)\end{align*}</math>}} |
- | + | and it follows that | |
- | {{ | + | {{Displayed math||<math>\begin{align*}&\Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/ \Bigl(-\frac{1}{\sqrt2} +\frac{i}{\sqrt2}\Bigr) = \smash{\frac{\cos\dfrac{7\pi}{4}+i\,\sin\dfrac{7\pi}{4}\vphantom{\Biggl(}}{\cos\dfrac{3\pi}{4}+i\,\sin\dfrac{3\pi}{4}\vphantom{\Biggl)}}}\\[16pt] &\qquad\quad{}= \cos\Bigl(\frac{7\pi}{4}-\frac{3\pi}{4}\Bigl)+i\,\sin\Bigl(\frac{7\pi}{4}-\frac{3\pi}{4}\Bigr)= \cos\pi+i\,\sin\pi=-1\,\mbox{.}\end{align*}</math>}} |
</li> | </li> | ||
<br/> | <br/> | ||
Line 333: | Line 329: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The factors in the expression are written in polar form | |
- | {{ | + | {{Displayed math||<math>\begin{align*}-2-2i&=\sqrt8\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{,}\\[4pt] 1+i&=\sqrt2\Bigl(\cos\frac{\pi}{4}+i\,\sin\frac{\pi}{4}\Bigr)\,\mbox{.}\end{align*}</math>}} |
- | + | Multiplication in polar form gives | |
- | {{ | + | {{Displayed math||<math>\begin{align*}(-2-2i)(1+i)&=\sqrt8 \times \sqrt2\,\Bigl(\cos\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)+i\,\sin\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)\Bigr)\\[4pt] &=4\Bigl(\cos\frac{3\pi}{2}+i\,\sin\frac{3\pi}{2} \Bigr)=-4i\,\mbox{.}\end{align*}</math>}} |
</li> | </li> | ||
</ol> | </ol> | ||
Line 342: | Line 338: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 7''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> Simplify <math>iz</math> and <math>\frac{z}{i}</math> if <math>\ z=2\Bigl(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\Bigr)</math>. Answer in polar form. |
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | Since <math>\ i=1\times \left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)\ </math> it follows that | |
- | {{ | + | {{Displayed math||<math>\begin{align*} iz &= 2\Bigl(\cos\Bigl(\frac{\pi}{6}+\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{\pi}{6}+\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\Bigr)\,\mbox{,}\\[4pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{\pi}{6}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{\pi}{6}-\frac{\pi}{2}\Bigr)\,\Bigr) = 2\Bigl(\cos\frac{-\pi}{3}+i\,\sin\frac{-\pi}{3}\Bigr)\,\mbox{.}\end{align*}</math>}} |
</li> | </li> | ||
<br/> | <br/> | ||
- | <li> | + | <li> Simplify <math>iz</math> and <math>\frac{z}{i}</math> if <math>\ z=3\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)\,</math>. Answer in polar form. |
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | Rewriting <math>i</math> in polar form gives | |
- | {{ | + | {{Displayed math||<math>\begin{align*} iz &= 3\Bigl(\cos\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\Bigr)\,\Bigr) = 3\Bigl(\cos\frac{9\pi}{4}+i\sin\frac{9\pi}{4}\Bigr)\\[4pt] &= 3\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)\,\mbox{,}\\[6pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{.}\end{align*}</math>}} |
</li> | </li> | ||
</ol> | </ol> | ||
- | + | We see that multiplying by ''i'' leads to an anticlockwise rotation <math>\pi/2</math>, while division with ''i'' results in a clockwise rotation <math>\pi/2</math>. | |
{| width="80%" align="center" | {| width="80%" align="center" | ||
- | ||{{:3.2 - | + | ||{{:3.2 - Figure - The complex plane with z, iz and z/i marked, where arg z = π/6}} |
| width="5%" | | | width="5%" | | ||
- | ||{{:3.2 - | + | ||{{:3.2 - Figure - The complex plane with z, iz and z/i marked, where arg z = 7π/4}} |
|- | |- | ||
- | ||<small> | + | ||<small>Complex numbers ''z'', ''iz'' and ''z''/''i'' when |''z''| = 2 and arg ''z'' = π/6.</small> |
|| | || | ||
- | ||<small> | + | ||<small>Complex numbers ''z'', ''iz'' and ''z''/''i'' when |''z''| = 3 and arg ''z'' = 7π/4.</small> |
|} | |} | ||
</div> | </div> |
Current revision
Theory | Exercises |
Contents:
- The complex plane
- Addition and subtraction in the complex plane
- Modulus and argument
- Polar form
- Multiplication and division in polar form
- Multiplication with i in the complex plane
Learning outcomes:
After this section, you will have learnt:
- A geometric understanding of complex numbers and their arithmetic operations in the plane.
- To be able to convert the complex number between the form a + ib and polar form.
The complex plane
As a complex number \displaystyle z=a+bi consists of a real part \displaystyle a and an imaginary part \displaystyle b, one can consider \displaystyle z to be an ordered pair of numbers \displaystyle (a,b) and interpreted as a point in a coordinate system. We thus construct a coordinate system by drawing an imaginary axis ( a number axis having a unit \displaystyle i) perpendicular to a real axis (the real-number axis). We can now designate each complex number as a point in this coordinate system, and conversely each point defines a unique complex number.
This geometric interpretation of the complex numbers is called the complex plane (sometimes the Argand diagram).
Note: The real numbers, that is all complex numbers with imaginary part 0, lie along the real axis. One can therefore regard the extension of the number system from \displaystyle \mathbb{R} (the real numbers) to \displaystyle \mathbb{C} (the complex numbers) to mean that one adjoins an extra dimension to the completely filled real-number axis .
Addition of complex numbers has a quite natural and simple interpretation in the complex plane and is geometrically the same method as vector addition. Subtraction can be seen as the addition of the corresponding negative number, that is \displaystyle z-w=z+(-w).
|
| |||
Geometrically the number z + w is obtained by considering a hypothetical line segment from 0 to w which is parallel-displaced so that its initial point at 0 is moved to z. Then this line segments terminal point w lands at the point z + w. | The subtraction z - w can be written as z + (-w) and can therefore be interpreted geometrically as a hypothetical line segment from 0 to -w is parallel-displaced so that its initial point at 0 is moved to z. Then this line segments terminal point -w lands at the point z - w. |
Example 1
Given \displaystyle z=2+i and \displaystyle w=-3-i. Indicate \displaystyle z, \displaystyle w, \displaystyle \overline{z}, \displaystyle \overline{z}-\overline{w} and \displaystyle z-w in the complex plane.
We have that
|
|
Note that complex conjugate pairs are mirror images in the real axis.
Example 2
Indicate in the complex plane all numbers \displaystyle z that meet the following conditions:
- \displaystyle \mathop{\rm Re} z \ge 3\,,
- \displaystyle -1 < \mathop{\rm Im} z \le 2\,.
The first inequality defines the region in the figure on the left below, and the second inequality defines the region in the figure on the right below.
|
| |
All the numbers that satisfy Re z ≥ 3 have a real part that is greater than or equal to 3. These figures form the shaded semi-plane in the figure. | Numbers that satisfy -1 < Im z ≤ 2 have an imaginary part that is between -1 and 2. These numbers are therefore in the ribbon-like region marked in the figure. The lower horizontal line is dotted and that means that points on that line do not belong to the shaded region. |
Absolute value
The real numbers can be arranged in order of magnitude; that is, we can determine whether one real number is greater than another, which is the same as determining whether it lies further to the right on the real number line.
For the complex numbers this is not possible. We cannot decide which is the larger of, say, \displaystyle z=1-i and \displaystyle w=-1+i . With the help of the concept of absolute value however, we can define a measure of the size of a complex number.
For a complex number \displaystyle z=a+ib the absolute value or modulus \displaystyle |\,z\,| is defined as
\displaystyle |\,z\,|=\sqrt{a^2+b^2}\,\mbox{.} |
We see that \displaystyle |\,z\,| is a real number, and that \displaystyle |\,z\,|\ge 0. For a real number \displaystyle b = 0 and then \displaystyle |\,z\,|=\sqrt{a^2}=|\,a\,|, which is consistent with the usual definition of an absolute value (or modulus) of a real number. Geometrically the absolute value is the distance from the number \displaystyle z=a+ib (the point \displaystyle (a, b)) to \displaystyle z = 0 (origin), according to Pythagoras' theorem.
Distance between complex numbers
With the help of the formula for the distance between points in a coordinate system one can obtain an important and useful interpretation of the absolute value. The distance \displaystyle s between the two complex numbers \displaystyle z=a+ib and \displaystyle w=c+id (see fig.) can with the help of the formula for distance be written as
\displaystyle s=\sqrt{(a-c)^2+(b-d)^2}\,\mbox{.} |
Since \displaystyle z-w=(a-c)+i(b-d), one gets
Example 3
Indicate the following sets in the complex plane:
|
|
|
|
|
|
|
|
Example 4
Indicate in the complex plane all numbers \displaystyle z satisfying the following conditions:
- \displaystyle \, \left\{ \eqalign{&|\,z-2i\,|\le 3\cr &1\le\mathop{\rm Re} z\le 2}\right.
The first inequality gives the points on and inside a circle with radius 3 and center at \displaystyle 2i. The second inequality is a vertical strip of points with their real part between 1 and 2. The area satisfying both inequalities is given by the points which lie both within the circle and within the strip. - \displaystyle \, |\,z+1\,|=|\,z-2\,|
The equation can be written as \displaystyle |\,z-(-1)\,|=|\,z-2\,|. This shows then that \displaystyle z should be at an equal distance from \displaystyle -1 and \displaystyle 2. This condition is met by all the numbers \displaystyle z that have a real part \displaystyle 1/2.
|
| |
The shaded region consists of the points that satisfy the inequalities |z - 2i| ≤ 3 and 1 ≤ Re z ≤ 2. | The points that satisfy the equation |z + 1| = |z - 2| lie on the line with real part equal to 1/2. |
Polar form
Instead of representing a complex number \displaystyle z=x+iy by its rectangular coordinates \displaystyle (x,y) one can use polar coordinates. This means that one represents a numbers location in the complex plane by its distance \displaystyle r to the origin, and the angle \displaystyle \alpha, made by the positive real-line axis and the line from the origin to the number (see the figure).
Since \displaystyle \,\cos\alpha = x/r\, and \displaystyle \,\sin\alpha = y/r\, then \displaystyle \,x = r\cos\alpha\, and \displaystyle \,y= r\sin\alpha. The number \displaystyle z=x+iy can be written as
\displaystyle z=r\cos\alpha + i\,r\sin\alpha = r(\cos\alpha + i\,\sin\alpha)\,\mbox{,} |
which is called the polar form of a complex number \displaystyle z. The angle \displaystyle \alpha is called the argument of \displaystyle z and is written
\displaystyle \alpha=\arg\,z\,\mbox{.} |
The angle \displaystyle \alpha, for example, can be determined by solving the equation \displaystyle \tan\alpha=y/x. This equation, however, has a number of solutions, so we must ensure that we choose the solution \displaystyle \alpha that allows \displaystyle z= r(\cos\alpha + i\sin\alpha) to end up in the correct quadrant.
The argument of a complex number is not uniquely determined because angles that differ by \displaystyle 2\pi indicate the same direction in the complex plane. Normally, one uses for the argument the angle between 0 and \displaystyle 2\pi or between \displaystyle -\pi and \displaystyle \pi.
The real number \displaystyle r, the distance to the origin as we have already seen, is the absolute value of \displaystyle z,
\displaystyle r=\sqrt{x^2+y^2}=|\,z\,|\,\mbox{.} |
Example 5
Write the following complex numbers in polar form:
- \displaystyle \,\,-3
We have that \displaystyle |\,-3\,|=3 and \displaystyle \arg (-3)=\pi, which means that \displaystyle \ -3=3(\cos\pi+i\,\sin\pi). - \displaystyle \,i
We have that \displaystyle |\,i\,|=1 and \displaystyle \arg i = \pi/2 which in polar form is \displaystyle \ i=\cos(\pi/2)+i\,\sin(\pi/2)\,. - \displaystyle \,1-i
The formula for a the absolute value of a complex number gives \displaystyle |\,1-i\,|=\sqrt{1^2+(-1)^2}=\sqrt{2}. The complex number lies in the fourth quadrant and has an angle \displaystyle \pi/4 with the positive real axis, which gives \displaystyle \arg (1-i)=2\pi-\pi/4=7\pi/4. Thus \displaystyle \ 1-i=\sqrt{2}\,\bigl(\cos(7\pi/4)+i\sin(7\pi/4)\,\bigr). - \displaystyle \,2\sqrt{3}+2i
The absolute value is the easiest to calculate\displaystyle |\,2\sqrt{3}+2i\,|=\sqrt{(2\sqrt{3}\,)^2+2^2}=\sqrt{16}=4\,\mbox{.} If we call the argument \displaystyle \alpha then it satisfies the relationship
\displaystyle \tan\alpha=\frac{2}{2\sqrt{3}}=\frac{1}{\sqrt{3}} and since the number is in the first quadrant (positive real and imaginary parts) one gets \displaystyle \alpha=\pi/6 and we have that
\displaystyle 2\sqrt{3}+2i=4\bigl(\cos\frac{\pi}{6}+i\,\sin\frac{\pi}{6}\bigr)\,\mbox{.}
Multiplication and division of polar forms
The big advantage of having the complex numbers written in polar form is that multiplication and division then becomes very easy to perform. For arbitrary complex numbers \displaystyle z=|\,z\,|\,(\cos\alpha+i\sin\alpha) and \displaystyle w=|\,w\,|\,(\cos\beta+i\sin\beta), it can be shown using the trigonometric formulas for addition that
\displaystyle \begin{align*}z\, w&=|\,z\,|\,|\,w\,|\,\bigl(\cos(\alpha+\beta)+i\,\sin(\alpha+\beta)\bigr)\,\mbox{,}\\[4pt] \frac{z}{w}&=\frac{|z|}{|w|}\bigl(\cos(\alpha-\beta)+i\,\sin(\alpha-\beta)\bigr)\,\mbox{.}\end{align*} |
When multiplying complex numbers, the absolute values are multiplied, while the arguments are added. For division of complex numbers, absolute values are divided and the arguments subtracted. This can be summarised as:
\displaystyle |\,z\, w\,|=|\,z\,|\, |\,w\,|\quad \mbox{and}\quad \arg(z\, w)=\arg\,z + \arg\,w\,\mbox{,} |
\displaystyle \Bigl|\,\frac{z}{w}\,\Bigr|=\frac{|\,z\,|}{|\,w\,|}\quad\quad\quad\; \mbox{ and}\quad \arg\Bigl(\frac{z}{w}\Bigr)=\arg \,z - \arg\,w\,\mbox{.} |
In the complex plane this means that multiplication of \displaystyle z with \displaystyle w causes \displaystyle z to be stretched by a factor \displaystyle |\,w\,| and rotated anticlockwise by an angle \displaystyle \arg\,w.
|
|
Example 6
Simplify the following expressions by writing them in polar form:
- \displaystyle \Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/
\Bigl( -\frac{1}{\sqrt2} +\frac{i}{\sqrt2}\Bigr)
We write the numerator and denominator in polar form\displaystyle \begin{align*}\frac{1}{\sqrt2} -\frac{i}{\sqrt2} &= 1\times\Bigl(\cos\frac{7\pi}{4}+i\,\sin\frac{7\pi}{4}\Bigr)\\[4pt] -\frac{1}{\sqrt2} +\frac{i}{\sqrt2} &= 1\times\Bigl(\cos\frac{3\pi}{4}+i\,\sin\frac{3\pi}{4}\Bigr)\end{align*} and it follows that
\displaystyle \begin{align*}&\Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/ \Bigl(-\frac{1}{\sqrt2} +\frac{i}{\sqrt2}\Bigr) = \smash{\frac{\cos\dfrac{7\pi}{4}+i\,\sin\dfrac{7\pi}{4}\vphantom{\Biggl(}}{\cos\dfrac{3\pi}{4}+i\,\sin\dfrac{3\pi}{4}\vphantom{\Biggl)}}}\\[16pt] &\qquad\quad{}= \cos\Bigl(\frac{7\pi}{4}-\frac{3\pi}{4}\Bigl)+i\,\sin\Bigl(\frac{7\pi}{4}-\frac{3\pi}{4}\Bigr)= \cos\pi+i\,\sin\pi=-1\,\mbox{.}\end{align*} - \displaystyle (-2-2i)(1+i)
The factors in the expression are written in polar form\displaystyle \begin{align*}-2-2i&=\sqrt8\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{,}\\[4pt] 1+i&=\sqrt2\Bigl(\cos\frac{\pi}{4}+i\,\sin\frac{\pi}{4}\Bigr)\,\mbox{.}\end{align*} Multiplication in polar form gives
\displaystyle \begin{align*}(-2-2i)(1+i)&=\sqrt8 \times \sqrt2\,\Bigl(\cos\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)+i\,\sin\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)\Bigr)\\[4pt] &=4\Bigl(\cos\frac{3\pi}{2}+i\,\sin\frac{3\pi}{2} \Bigr)=-4i\,\mbox{.}\end{align*}
Example 7
- Simplify \displaystyle iz and \displaystyle \frac{z}{i} if \displaystyle \ z=2\Bigl(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\Bigr). Answer in polar form.
Since \displaystyle \ i=1\times \left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)\ it follows that\displaystyle \begin{align*} iz &= 2\Bigl(\cos\Bigl(\frac{\pi}{6}+\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{\pi}{6}+\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\Bigr)\,\mbox{,}\\[4pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{\pi}{6}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{\pi}{6}-\frac{\pi}{2}\Bigr)\,\Bigr) = 2\Bigl(\cos\frac{-\pi}{3}+i\,\sin\frac{-\pi}{3}\Bigr)\,\mbox{.}\end{align*} - Simplify \displaystyle iz and \displaystyle \frac{z}{i} if \displaystyle \ z=3\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)\,. Answer in polar form.
Rewriting \displaystyle i in polar form gives\displaystyle \begin{align*} iz &= 3\Bigl(\cos\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\Bigr)\,\Bigr) = 3\Bigl(\cos\frac{9\pi}{4}+i\sin\frac{9\pi}{4}\Bigr)\\[4pt] &= 3\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)\,\mbox{,}\\[6pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{.}\end{align*}
We see that multiplying by i leads to an anticlockwise rotation \displaystyle \pi/2, while division with i results in a clockwise rotation \displaystyle \pi/2.
|
| |
Complex numbers z, iz and z/i when |z| = 2 and arg z = π/6. | Complex numbers z, iz and z/i when |z| = 3 and arg z = 7π/4. |