3.1 Complex number calculations
From Förberedande kurs i matematik 2
m (Robot: Automated text replacement (-Övningar +Exercises)) |
(Edited for UK idiom etc.) |
||
(3 intermediate revisions not shown.) | |||
Line 2: | Line 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #797979" width="5px" | | | style="border-bottom:1px solid #797979" width="5px" | | ||
- | {{ | + | {{Selected tab|[[3.1 Complex number calculations|Theory]]}} |
- | {{ | + | {{Not selected tab|[[3.1 Exercises|Exercises]]}} |
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
Line 26: | Line 26: | ||
== Introduction == | == Introduction == | ||
- | The real numbers represent a complete set of numbers in the sense that they "fill" the real-number axis. Despite this, the real numbers | + | The real numbers represent a complete set of numbers in the sense that they "fill" the real-number axis. Despite this, the set of real numbers does not contain the solutions of ''all'' possible algebraic equations. In other words, there are equations of the type |
- | {{ | + | {{Displayed math||<math>a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0</math>}} |
- | + | that do not have a solution among the real numbers. For example, the equation <math>x^2+1=0</math> has no real solution, since no real number satisfies <math>x^2=-1</math>. However, if we can imagine <math>\sqrt{-1}</math> as the number that satisfies the equation <math>x^2=-1</math> and manipulate <math>\sqrt{-1}</math> just like any other number, it turns out that every algebraic equation does have solutions. | |
- | The number <math>\sqrt{-1}</math> however is | + | The number <math>\sqrt{-1}</math>, however, is a fairly strange object. We cannot go out into the world and measure <math>\sqrt{-1}</math> anywhere, or find something that is numerically <math>\sqrt{-1}</math>. Nonetheless, this number turns out to be very useful in many applications of mathematics. |
Line 37: | Line 37: | ||
''' Example 1''' | ''' Example 1''' | ||
- | If we would like to find out the sum of the roots (solutions) of the equation <math>x^2-2x+2=0</math> we can first obtain the roots <math>x_1=1+\sqrt{-1}</math> and <math>x_2=1-\sqrt{-1}</math>. These roots contain | + | If we would like to find out the sum of the roots (solutions) of the equation <math>x^2-2x+2=0</math> we can first obtain the roots <math>x_1=1+\sqrt{-1}</math> and <math>x_2=1-\sqrt{-1}</math>. These roots contain <math>\sqrt{-1}</math>. If we allow ourselves to do calculations containing <math>\sqrt{-1}</math>, we see that the sum of <math>x_1</math> and <math>x_2</math> turns out to be <math>1+\sqrt{-1} + 1-\sqrt{-1} =2</math>, which is an ordinary, familiar "real" number. |
- | + | Even though the answer to the problem was a "real" number, we found the "imaginary" number <math>\sqrt{-1}</math> useful in solving it. | |
</div> | </div> | ||
Line 45: | Line 45: | ||
== Definition of complex numbers== | == Definition of complex numbers== | ||
- | + | The terms "real" (for the ordinary, familiar positive and negative numbers, together with zero) and "imaginary" (for numbers like <math>\sqrt{-1}</math>) are actually pretty flawed in some ways (''all'' numbers are abstract human inventions, it could be argued). Nonetheless, this terminology, which reflects the unease and scepticism with which the mathematical community once viewed numbers like <math>\sqrt{-1}</math>, has stuck. | |
+ | |||
+ | The number <math>\sqrt{-1}</math> cannot be given an approximate decimal value, the way <math>\sqrt{2}</math> can; we have no choice but to write it as an unevaluated root (a ''surd''). For simplicity and economy, we usually represent this number by the symbol <math>i</math> (sometimes <math>j</math>). It is sometimes called the ''imaginary unit'', and any number of the form <math>b\,i</math>, where <math>b</math> is real, is known as an ''imaginary number''. We go on to define a ''complex number'' as an object that can be written in the form | ||
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>z=a+bi\,\mbox{,}</math>}} |
</div> | </div> | ||
Line 58: | Line 60: | ||
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>\begin{align*}a &= \mathop{\rm Re} z\,\mbox{,}\\ b&=\mathop{\rm Im} z\,\mbox{.}\end{align*}</math>}} |
</div> | </div> | ||
- | When one calculates with complex numbers one treats them | + | When one calculates with complex numbers one treats them just like real numbers, but keeps track of the fact that <math>i^2=-1</math>. |
==Addition and subtraction == | ==Addition and subtraction == | ||
- | To add or subtract complex numbers one adds | + | To add or subtract complex numbers one adds or subtracts the real and imaginary parts separately. |
If <math>z=a+bi</math> and <math>w=c+di</math> are two complex numbers then, | If <math>z=a+bi</math> and <math>w=c+di</math> are two complex numbers then, | ||
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>\begin{align*} z+w &= a+bi+c+di = a+c+(b+d)i\,\mbox{,}\\ z-w &= a+bi-(c+di) = a-c+(b-d)i\,\mbox{.}\end{align*}</math>}} |
</div> | </div> | ||
Line 90: | Line 92: | ||
Complex numbers are multiplied in the same way as ordinary real numbers or algebraic expressions, with the extra condition that <math>i^2=-1</math>. Generally one has for two complex numbers <math>z=a+bi</math> and <math>w=c+di</math> that | Complex numbers are multiplied in the same way as ordinary real numbers or algebraic expressions, with the extra condition that <math>i^2=-1</math>. Generally one has for two complex numbers <math>z=a+bi</math> and <math>w=c+di</math> that | ||
- | <div class="regel">{{ | + | <div class="regel">{{Displayed math||<math>z\, w=(a+bi)(c+di)=ac+adi+bci+bdi^2=(ac-bd)+(ad+bc)i\,\mbox{.}</math>}} |
</div> | </div> | ||
Line 101: | Line 103: | ||
<li><math>(1+i)(2+3i)=2+3i+2i+3i^2=-1+5i</math></li> | <li><math>(1+i)(2+3i)=2+3i+2i+3i^2=-1+5i</math></li> | ||
<li><math>(3+2i)(3-2i)=3^2-(2i)^2=9-4i^2=13</math></li> | <li><math>(3+2i)(3-2i)=3^2-(2i)^2=9-4i^2=13</math></li> | ||
- | <li><math>(3+i)^2=3^2+2\ | + | <li><math>(3+i)^2=3^2+2\times3i+i^2=8+6i</math></li> |
<li><math>i^{12}=(i^2)^6=(-1)^6=1</math></li> | <li><math>i^{12}=(i^2)^6=(-1)^6=1</math></li> | ||
- | <li><math>i^{23}=i^{22}\ | + | <li><math>i^{23}=i^{22}\times i=(i^2)^{11}\times i=(-1)^{11}i=-i</math></li> |
</ol> | </ol> | ||
</div> | </div> | ||
Line 113: | Line 115: | ||
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>\begin{align*} z+\overline{z} &= a + bi + a - bi = 2a = 2\, \mathop{\rm Re} z\,\mbox{,}\\ z-\overline{z} &= a + bi - (a - bi) = 2bi = 2i\, \mathop{\rm Im} z\,\mbox{,}\end{align*}</math>}} |
</div> | </div> | ||
Line 119: | Line 121: | ||
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>z\, \bar z = (a+bi)(a-bi)=a^2-(bi)^2=a^2-b^2i^2=a^2+b^2\,\mbox{,}</math>}} |
</div> | </div> | ||
Line 145: | Line 147: | ||
*<math>z+\overline{z} = 4 + 3i + 4 -3i = 8</math> | *<math>z+\overline{z} = 4 + 3i + 4 -3i = 8</math> | ||
*<math>z-\overline{z} = 6i</math> | *<math>z-\overline{z} = 6i</math> | ||
- | *<math>z \ | + | *<math>z \, \overline{z} = 4^2-(3i)^2=16+9=25</math> |
</li> | </li> | ||
<li> If for <math>z</math> one has <math>\mathop{\rm Re} z=-2</math> | <li> If for <math>z</math> one has <math>\mathop{\rm Re} z=-2</math> | ||
Line 151: | Line 153: | ||
*<math>z+\overline{z} = 2\,\mathop{\rm Re} z = -4</math> | *<math>z+\overline{z} = 2\,\mathop{\rm Re} z = -4</math> | ||
*<math>z-\overline{z} = 2i\,\mathop{\rm Im} z = 2i</math> | *<math>z-\overline{z} = 2i\,\mathop{\rm Im} z = 2i</math> | ||
- | *<math>z\ | + | *<math>z\, \overline{z} = (-2)^2+1^2=5</math> |
</li> | </li> | ||
</ol> | </ol> | ||
Line 159: | Line 161: | ||
== Division == | == Division == | ||
- | For the division of two complex numbers one multiplies the numerator and denominator | + | For the division of two complex numbers one multiplies the numerator and denominator by the complex conjugate of the denominator, thus getting a denominator which is a real number. Then, both the real and imaginary parts of the (new) numerator are divided by this number (the new denominator). In general, if <math>z=a+bi</math> and <math>w=c+di</math>: |
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>\frac{z}{w} = \frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2} = \frac{ac+bd}{c^2+d^2}+\frac{bc-ad}{c^2+d^2}\,i</math>}} |
</div> | </div> | ||
Line 194: | Line 196: | ||
= \frac{\dfrac{-1-i}{1-i}}{\dfrac{-2+5i}{2+i}}</math><br/> | = \frac{\dfrac{-1-i}{1-i}}{\dfrac{-2+5i}{2+i}}</math><br/> | ||
<math>\quad\phantom{\smash{\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}}}}{} | <math>\quad\phantom{\smash{\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}}}}{} | ||
- | = \frac{-1-i}{1-i}\ | + | = \frac{-1-i}{1-i}\times \frac{2+i}{-2+5i} |
= \frac{(-1-i)(2+i)}{(1-i)(-2+5i)} | = \frac{(-1-i)(2+i)}{(1-i)(-2+5i)} | ||
= \frac{-2-i-2i-i^2}{-2+5i+2i-5i^2}\vphantom{\Biggl(}</math><br/> | = \frac{-2-i-2i-i^2}{-2+5i+2i-5i^2}\vphantom{\Biggl(}</math><br/> | ||
Line 209: | Line 211: | ||
''' Example 8''' | ''' Example 8''' | ||
- | Determine the real number <math>a</math> | + | Determine the real number <math>a</math> such that the expression <math>\ \frac{2-3i}{2+ai}\ </math> becomes real. |
<br\> | <br\> | ||
<br\> | <br\> | ||
- | Multiply the numerator and denominator | + | Multiply the numerator and denominator by the complex conjugate of the denominator so that the expression can be written with separate real and imaginary parts. |
- | {{ | + | {{Displayed math||<math>\frac{(2-3i)(2-ai)}{(2+ai)(2-ai)} = \frac{4-2ai-6i+3ai^2}{4-a^2i^2} = \frac{4-3a-(2a+6)i}{4+a^2}</math>}} |
If the expression is to be real , the imaginary part must be 0, ie. | If the expression is to be real , the imaginary part must be 0, ie. | ||
- | {{ | + | {{Displayed math||<math>2a+6=0\quad\Leftrightarrow\quad a = -3\,\mbox{.}</math>}} |
</div> | </div> | ||
Line 225: | Line 227: | ||
== Equations == | == Equations == | ||
- | + | If the two complex numbers <math>z=a+bi</math> and <math>w=c+di</math> are equal then it is not hard to show that both the real and imaginary parts must be equal (in other words, <math>a=c</math> and <math>b=d</math>). When you are looking for an unknown complex number <math>z</math> in an equation, you can either try to solve for the number <math>z</math> in the usual way, or insert <math>z=a+bi</math> in the equation and then compare the real and imaginary parts of the two sides of the equation with each other. | |
<div class="exempel"> | <div class="exempel"> | ||
Line 235: | Line 237: | ||
<br/> | <br/> | ||
Collect all <math>z</math> on the left-hand side by subtracting <math>z</math> from both sides | Collect all <math>z</math> on the left-hand side by subtracting <math>z</math> from both sides | ||
- | {{ | + | {{Displayed math||<math>2z+1-i = -3+7i</math>}} and now subtract <math>1-i</math> |
- | {{ | + | {{Displayed math||<math>2z = -4+8i\,\mbox{.}</math>}} |
This gives that <math>\ z=\frac{-4+8i}{2}=-2+4i\,\mbox{.}</math></li> | This gives that <math>\ z=\frac{-4+8i}{2}=-2+4i\,\mbox{.}</math></li> | ||
Line 243: | Line 245: | ||
<br/> | <br/> | ||
Divide both sides by <math>-1-i</math> in order to obtain <math>z</math> | Divide both sides by <math>-1-i</math> in order to obtain <math>z</math> | ||
- | {{ | + | {{Displayed math||<math>z = \frac{6-2i}{-1-i} = \frac{(6-2i)(-1+i)}{(-1-i)(-1+i)} = \frac{-6+6i+2i-2i^2}{(-1)^2 -i^2} = \frac{-4+8i}{2} = -2+4i\,\mbox{.}</math>}}</li> |
<li> Solve the equation <math>3iz-2i=1-z</math>. | <li> Solve the equation <math>3iz-2i=1-z</math>. | ||
Line 249: | Line 251: | ||
<br/> | <br/> | ||
Adding <math>z</math> and <math>2i</math> to both sides gives | Adding <math>z</math> and <math>2i</math> to both sides gives | ||
- | {{ | + | {{Displayed math||<math>3iz+z=1+2i\quad \Leftrightarrow \quad z(3i+1)=1+2i\,\mbox{.}</math>}} |
This gives | This gives | ||
- | {{ | + | {{Displayed math||<math>z = \frac{1+2i}{1+3i} = \frac{(1+2i)(1-3i)}{(1+3i)(1-3i)} = \frac{1-3i+2i-6i^2}{1-9i^2} = \frac{7-i}{10}\,\mbox{.}</math>}}</li> |
<li> Solve the equation <math>2z+1-i=\bar z +3 + 2i</math>. | <li> Solve the equation <math>2z+1-i=\bar z +3 + 2i</math>. | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | The equation contains both <math>z</math> as well as <math>\overline{z}</math> and therefore we assume <math>z</math> to be <math>z=a+ib</math> and solve the equation for <math>a</math> and <math>b</math> by equating the real and imaginary parts of both sides {{ | + | The equation contains both <math>z</math> as well as <math>\overline{z}</math> and therefore we assume <math>z</math> to be <math>z=a+ib</math> and solve the equation for <math>a</math> and <math>b</math> by equating the real and imaginary parts of both sides {{Displayed math||<math>2(a+bi)+1-i=(a-bi)+3+2i</math>}} |
i.e. | i.e. | ||
- | {{ | + | {{Displayed math||<math>(2a+1)+(2b-1)i=(a+3)+(2-b)i\,\mbox{,}</math>}} |
which gives | which gives | ||
- | {{ | + | {{Displayed math||<math>\left\{\begin{align*} 2a+1 &= a+3\\ 2b-1 &= 2-b\end{align*}\right.\quad\Leftrightarrow\quad\left\{\begin{align*} a &= 2\\ b &= 1\end{align*}\right.\,\mbox{.}</math>}} |
The answer is therefore, <math>z=2+i</math>.</li> | The answer is therefore, <math>z=2+i</math>.</li> | ||
Line 275: | Line 277: | ||
Calculations with complex numbers are done in the same way as with ordinary numbers with the additional information that <math>i^2=-1</math>. | Calculations with complex numbers are done in the same way as with ordinary numbers with the additional information that <math>i^2=-1</math>. | ||
- | Quotients of complex numbers are simplified by multiplying the numerator and denominator | + | Quotients of complex numbers are simplified by multiplying the numerator and denominator by the complex conjugate of the denominator. |
</div> | </div> |
Current revision
Theory | Exercises |
Contents:
- Real and imaginary part
- Addition and subtraction of complex numbers
- Complex conjugate
- Multiplication and division of complex numbers
Learning outcomes:
After this section, you will have learned to:
- Simplify expressions that are constructed using complex numbers and the four arithmetic operations.
- Solve first order complex number equations and simplify the answer.
Introduction
The real numbers represent a complete set of numbers in the sense that they "fill" the real-number axis. Despite this, the set of real numbers does not contain the solutions of all possible algebraic equations. In other words, there are equations of the type
\displaystyle a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0 |
that do not have a solution among the real numbers. For example, the equation \displaystyle x^2+1=0 has no real solution, since no real number satisfies \displaystyle x^2=-1. However, if we can imagine \displaystyle \sqrt{-1} as the number that satisfies the equation \displaystyle x^2=-1 and manipulate \displaystyle \sqrt{-1} just like any other number, it turns out that every algebraic equation does have solutions. The number \displaystyle \sqrt{-1}, however, is a fairly strange object. We cannot go out into the world and measure \displaystyle \sqrt{-1} anywhere, or find something that is numerically \displaystyle \sqrt{-1}. Nonetheless, this number turns out to be very useful in many applications of mathematics.
Example 1
If we would like to find out the sum of the roots (solutions) of the equation \displaystyle x^2-2x+2=0 we can first obtain the roots \displaystyle x_1=1+\sqrt{-1} and \displaystyle x_2=1-\sqrt{-1}. These roots contain \displaystyle \sqrt{-1}. If we allow ourselves to do calculations containing \displaystyle \sqrt{-1}, we see that the sum of \displaystyle x_1 and \displaystyle x_2 turns out to be \displaystyle 1+\sqrt{-1} + 1-\sqrt{-1} =2, which is an ordinary, familiar "real" number.
Even though the answer to the problem was a "real" number, we found the "imaginary" number \displaystyle \sqrt{-1} useful in solving it.
Definition of complex numbers
The terms "real" (for the ordinary, familiar positive and negative numbers, together with zero) and "imaginary" (for numbers like \displaystyle \sqrt{-1}) are actually pretty flawed in some ways (all numbers are abstract human inventions, it could be argued). Nonetheless, this terminology, which reflects the unease and scepticism with which the mathematical community once viewed numbers like \displaystyle \sqrt{-1}, has stuck.
The number \displaystyle \sqrt{-1} cannot be given an approximate decimal value, the way \displaystyle \sqrt{2} can; we have no choice but to write it as an unevaluated root (a surd). For simplicity and economy, we usually represent this number by the symbol \displaystyle i (sometimes \displaystyle j). It is sometimes called the imaginary unit, and any number of the form \displaystyle b\,i, where \displaystyle b is real, is known as an imaginary number. We go on to define a complex number as an object that can be written in the form
\displaystyle z=a+bi\,\mbox{,} |
where \displaystyle a and \displaystyle b are real numbers, and \displaystyle i satisfies \displaystyle i^2=-1.
If \displaystyle a = 0 then the number is "purely imaginary". If \displaystyle b = 0 the number is real. We can see that the real numbers are a subset of the complex numbers. The set of complex numbers is designated by C.
For an arbitrary complex number one often uses the symbol \displaystyle z. If \displaystyle z=a+bi, where \displaystyle a and \displaystyle b are real, then \displaystyle a is the real part and \displaystyle b the imaginary part of \displaystyle z. One uses the following notation:
\displaystyle \begin{align*}a &= \mathop{\rm Re} z\,\mbox{,}\\ b&=\mathop{\rm Im} z\,\mbox{.}\end{align*} |
When one calculates with complex numbers one treats them just like real numbers, but keeps track of the fact that \displaystyle i^2=-1.
Addition and subtraction
To add or subtract complex numbers one adds or subtracts the real and imaginary parts separately. If \displaystyle z=a+bi and \displaystyle w=c+di are two complex numbers then,
\displaystyle \begin{align*} z+w &= a+bi+c+di = a+c+(b+d)i\,\mbox{,}\\ z-w &= a+bi-(c+di) = a-c+(b-d)i\,\mbox{.}\end{align*} |
Example 2
- \displaystyle (3-5i)+(-4+i)=-1-4i
- \displaystyle \bigl(\tfrac{1}{2}+2i\bigr)-\bigl(\tfrac{1}{6}+3i\bigr) = \tfrac{1}{3}-i
- \displaystyle \frac{3+2i}{5}-\frac{3-i}{2} = \frac{6+4i}{10}-\frac{15-5i}{10} = \frac{-9+9i}{10} = -0\textrm{.}9 + 0\textrm{.}9i
Multiplication
Complex numbers are multiplied in the same way as ordinary real numbers or algebraic expressions, with the extra condition that \displaystyle i^2=-1. Generally one has for two complex numbers \displaystyle z=a+bi and \displaystyle w=c+di that
\displaystyle z\, w=(a+bi)(c+di)=ac+adi+bci+bdi^2=(ac-bd)+(ad+bc)i\,\mbox{.} |
Example 3
- \displaystyle 3(4-i)=12-3i
- \displaystyle 2i(3-5i)=6i-10i^2=10+6i
- \displaystyle (1+i)(2+3i)=2+3i+2i+3i^2=-1+5i
- \displaystyle (3+2i)(3-2i)=3^2-(2i)^2=9-4i^2=13
- \displaystyle (3+i)^2=3^2+2\times3i+i^2=8+6i
- \displaystyle i^{12}=(i^2)^6=(-1)^6=1
- \displaystyle i^{23}=i^{22}\times i=(i^2)^{11}\times i=(-1)^{11}i=-i
Complex conjugate
If \displaystyle z=a+bi then \displaystyle \overline{z} = a-bi is called the complex conjugate of \displaystyle z (the opposite is also true, that \displaystyle z is conjugate to \displaystyle \overline{z}). One obtains the relationships
\displaystyle \begin{align*} z+\overline{z} &= a + bi + a - bi = 2a = 2\, \mathop{\rm Re} z\,\mbox{,}\\ z-\overline{z} &= a + bi - (a - bi) = 2bi = 2i\, \mathop{\rm Im} z\,\mbox{,}\end{align*} |
but most importantly, using the difference of two squares rule, one obtains
\displaystyle z\, \bar z = (a+bi)(a-bi)=a^2-(bi)^2=a^2-b^2i^2=a^2+b^2\,\mbox{,} |
i.e. that the product of a complex number and its conjugate is always real.
Example 4
- \displaystyle z=5+i\qquad then \displaystyle \quad\overline{z}=5-i\,.
- \displaystyle z=-3-2i\qquad then \displaystyle \quad\overline{z} =-3+2i\,.
- \displaystyle z=17\qquad then \displaystyle \quad\overline{z} =17\,.
- \displaystyle z=i\qquad then \displaystyle \quad\overline{z} =-i\,.
- \displaystyle z=-5i\qquad then \displaystyle \quad\overline{z} =5i\,.
Example 5
- If \displaystyle z=4+3i one has
- \displaystyle z+\overline{z} = 4 + 3i + 4 -3i = 8
- \displaystyle z-\overline{z} = 6i
- \displaystyle z \, \overline{z} = 4^2-(3i)^2=16+9=25
- If for \displaystyle z one has \displaystyle \mathop{\rm Re} z=-2
and \displaystyle \mathop{\rm Im} z=1, one gets
- \displaystyle z+\overline{z} = 2\,\mathop{\rm Re} z = -4
- \displaystyle z-\overline{z} = 2i\,\mathop{\rm Im} z = 2i
- \displaystyle z\, \overline{z} = (-2)^2+1^2=5
Division
For the division of two complex numbers one multiplies the numerator and denominator by the complex conjugate of the denominator, thus getting a denominator which is a real number. Then, both the real and imaginary parts of the (new) numerator are divided by this number (the new denominator). In general, if \displaystyle z=a+bi and \displaystyle w=c+di:
\displaystyle \frac{z}{w} = \frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2} = \frac{ac+bd}{c^2+d^2}+\frac{bc-ad}{c^2+d^2}\,i |
Example 6
- \displaystyle \quad\frac{4+2i}{1+i} = \frac{(4+2i)(1-i)}{(1+i)(1-i)} = \frac{4-4i+2i-2i^2}{1-i^2} = \frac{6-2i}{2}=3-i
- \displaystyle \quad\frac{25}{3-4i} = \frac{25(3+4i)}{(3-4i)(3+4i)} = \frac{25(3+4i)}{3^2-16i^2} = \frac{25(3+4i)}{25} = 3+4i
- \displaystyle \quad\frac{3-2i}{i} = \frac{(3-2i)(-i)}{i(-i)} = \frac{-3i+2i^2}{-i^2} = \frac{-2-3i}{1} = -2-3i
Example 7
- \displaystyle \quad\frac{2}{2-i}-\frac{i}{1+i}
= \frac{2(2+i)}{(2-i)(2+i)} - \frac{i(1-i)}{(1+i)(1-i)}
= \frac{4+2i}{5}-\frac{1+i}{2}
\displaystyle \quad\phantom{\frac{2}{2-i}-\frac{i}{1+i}}{} = \frac{8+4i}{10}-\frac{5+5i}{10} = \frac{3-i}{10}\vphantom{\Biggl(} - \displaystyle \quad\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}}
= \frac{\dfrac{1-i}{1-i}-\dfrac{2}{1-i}}{\dfrac{2i(2+i)}{(2+i)}
+ \dfrac{i}{2+i}}
= \frac{\dfrac{1-i-2}{1-i}}{\dfrac{4i+2i^2 + i}{2+i}}
= \frac{\dfrac{-1-i}{1-i}}{\dfrac{-2+5i}{2+i}}
\displaystyle \quad\phantom{\smash{\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}}}}{} = \frac{-1-i}{1-i}\times \frac{2+i}{-2+5i} = \frac{(-1-i)(2+i)}{(1-i)(-2+5i)} = \frac{-2-i-2i-i^2}{-2+5i+2i-5i^2}\vphantom{\Biggl(}
\displaystyle \quad\phantom{\smash{\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}}}}{} = \frac{-1-3i}{3+7i} = \frac{(-1-3i)(3-7i)}{(3+7i)(3-7i)} = \frac{-3+7i-9i+21i^2}{3^2-49i^2}\vphantom{\Biggl(} \displaystyle \quad\phantom{\smash{\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}}}}{} = \frac{-24-2i}{58} = \frac{-12-i}{29}\vphantom{\Biggl(}
Example 8
Determine the real number \displaystyle a such that the expression \displaystyle \ \frac{2-3i}{2+ai}\ becomes real.
Multiply the numerator and denominator by the complex conjugate of the denominator so that the expression can be written with separate real and imaginary parts.
\displaystyle \frac{(2-3i)(2-ai)}{(2+ai)(2-ai)} = \frac{4-2ai-6i+3ai^2}{4-a^2i^2} = \frac{4-3a-(2a+6)i}{4+a^2} |
If the expression is to be real , the imaginary part must be 0, ie.
\displaystyle 2a+6=0\quad\Leftrightarrow\quad a = -3\,\mbox{.} |
Equations
If the two complex numbers \displaystyle z=a+bi and \displaystyle w=c+di are equal then it is not hard to show that both the real and imaginary parts must be equal (in other words, \displaystyle a=c and \displaystyle b=d). When you are looking for an unknown complex number \displaystyle z in an equation, you can either try to solve for the number \displaystyle z in the usual way, or insert \displaystyle z=a+bi in the equation and then compare the real and imaginary parts of the two sides of the equation with each other.
Example 9
- Solve the equation \displaystyle 3z+1-i=z-3+7i.
Collect all \displaystyle z on the left-hand side by subtracting \displaystyle z from both sides\displaystyle 2z+1-i = -3+7i \displaystyle 2z = -4+8i\,\mbox{.} - Solve the equation \displaystyle z(-1-i)=6-2i.
Divide both sides by \displaystyle -1-i in order to obtain \displaystyle z\displaystyle z = \frac{6-2i}{-1-i} = \frac{(6-2i)(-1+i)}{(-1-i)(-1+i)} = \frac{-6+6i+2i-2i^2}{(-1)^2 -i^2} = \frac{-4+8i}{2} = -2+4i\,\mbox{.} - Solve the equation \displaystyle 3iz-2i=1-z.
Adding \displaystyle z and \displaystyle 2i to both sides gives\displaystyle 3iz+z=1+2i\quad \Leftrightarrow \quad z(3i+1)=1+2i\,\mbox{.} This gives
\displaystyle z = \frac{1+2i}{1+3i} = \frac{(1+2i)(1-3i)}{(1+3i)(1-3i)} = \frac{1-3i+2i-6i^2}{1-9i^2} = \frac{7-i}{10}\,\mbox{.} - Solve the equation \displaystyle 2z+1-i=\bar z +3 + 2i.
The equation contains both \displaystyle z as well as \displaystyle \overline{z} and therefore we assume \displaystyle z to be \displaystyle z=a+ib and solve the equation for \displaystyle a and \displaystyle b by equating the real and imaginary parts of both sides\displaystyle 2(a+bi)+1-i=(a-bi)+3+2i i.e.
\displaystyle (2a+1)+(2b-1)i=(a+3)+(2-b)i\,\mbox{,} which gives
\displaystyle \left\{\begin{align*} 2a+1 &= a+3\\ 2b-1 &= 2-b\end{align*}\right.\quad\Leftrightarrow\quad\left\{\begin{align*} a &= 2\\ b &= 1\end{align*}\right.\,\mbox{.}
Study advice
Keep in mind that:
Calculations with complex numbers are done in the same way as with ordinary numbers with the additional information that \displaystyle i^2=-1.
Quotients of complex numbers are simplified by multiplying the numerator and denominator by the complex conjugate of the denominator.