Solution 3.3:2e

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:3_3_2e-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:3_3_2e-2(2).gif </center> {{NAVCONTENT_STOP}})
Current revision (13:21, 30 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we treat the expression <math>w=\frac{z+i}{z-i}</math> as an unknown, we have the equation
-
<center> [[Bild:3_3_2e-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>w^2=-1\,\textrm{.}</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Bild:3_3_2e-2(2).gif]] </center>
+
We know already that this equation has roots
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>w=\left\{\begin{align}
 +
-i\,,&\\[5pt]
 +
i\,,&
 +
\end{align}\right.</math>}}
 +
 
 +
so <math>z</math> should satisfy one of the equation's
 +
 
 +
{{Displayed math||<math>\frac{z+i}{z-i}=-i\quad</math> or <math>\quad\frac{z+i}{z-i}=i\,\textrm{.}</math>}}
 +
 
 +
We solve these equations one by one.
 +
 
 +
 
 +
*<math>(z+i)/(z-i)=-i</math>:
 +
 
 +
:Multiply both sides by <math>z-i</math>,
 +
 
 +
{{Displayed math||<math>z+i=-i(z-i)\,\textrm{.}</math>}}
 +
 
 +
:Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side,
 +
 
 +
{{Displayed math||<math>z+iz=-1-i\,\textrm{.}</math>}}
 +
 
 +
:This gives
 +
 
 +
{{Displayed math||<math>z = \frac{-1-i}{1+i} = \frac{-(1+i)}{1+i} = -1\,\textrm{.}</math>}}
 +
 
 +
 
 +
*<math>(z+i)/(z-i)=i</math>:
 +
 
 +
:Multiply both sides by <math>z-i</math>,
 +
 
 +
{{Displayed math||<math>z+i=i(z-i)\,\textrm{.}</math>}}
 +
 
 +
:Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side,
 +
 
 +
{{Displayed math||<math>z-iz=1-i\,\textrm{.}</math>}}
 +
 
 +
:This gives
 +
 
 +
{{Displayed math||<math>z = \frac{1-i}{1-i} = 1\,\textrm{.}</math>}}
 +
 
 +
 
 +
The solutions are therefore <math>z=-1</math> and <math>z=1\,</math>.

Current revision

If we treat the expression \displaystyle w=\frac{z+i}{z-i} as an unknown, we have the equation

\displaystyle w^2=-1\,\textrm{.}

We know already that this equation has roots

\displaystyle w=\left\{\begin{align}

-i\,,&\\[5pt] i\,,& \end{align}\right.

so \displaystyle z should satisfy one of the equation's

\displaystyle \frac{z+i}{z-i}=-i\quad or \displaystyle \quad\frac{z+i}{z-i}=i\,\textrm{.}

We solve these equations one by one.


  • \displaystyle (z+i)/(z-i)=-i:
Multiply both sides by \displaystyle z-i,
\displaystyle z+i=-i(z-i)\,\textrm{.}
Move all the \displaystyle z-terms over to the left-hand side and all the constants to the right-hand side,
\displaystyle z+iz=-1-i\,\textrm{.}
This gives
\displaystyle z = \frac{-1-i}{1+i} = \frac{-(1+i)}{1+i} = -1\,\textrm{.}


  • \displaystyle (z+i)/(z-i)=i:
Multiply both sides by \displaystyle z-i,
\displaystyle z+i=i(z-i)\,\textrm{.}
Move all the \displaystyle z-terms over to the left-hand side and all the constants to the right-hand side,
\displaystyle z-iz=1-i\,\textrm{.}
This gives
\displaystyle z = \frac{1-i}{1-i} = 1\,\textrm{.}


The solutions are therefore \displaystyle z=-1 and \displaystyle z=1\,.