Solution 3.1:1e

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (15:00, 29 October 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
A suitable first step can be to work out the square term, <math>(2-i)^2</math>, by expanding it,
-
<center> [[Image:3_1_1e.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
 +
(2-i)^2 &= 2^2 - 2\cdot 2i + i^2\\[5pt]
 +
&= 4-4i+i^2\\[5pt]
 +
&= 4-4i-1\\[5pt]
 +
&= 3-4i\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
After that, we calculate the remaining product,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
(1+i)(3-4i) &= 1\cdot3 - 1\cdot 4i + i\cdot 3 - i\cdot 4i\\[5pt]
 +
&= 3-4i+3i-4i^2\\[5pt]
 +
&= 3+(-4+3)i-4\cdot (-1)\\[5pt]
 +
&= 3-i+4\\[5pt]
 +
&= 7-i\,\textrm{.}
 +
\end{align}</math>}}

Current revision

A suitable first step can be to work out the square term, \displaystyle (2-i)^2, by expanding it,

\displaystyle \begin{align}

(2-i)^2 &= 2^2 - 2\cdot 2i + i^2\\[5pt] &= 4-4i+i^2\\[5pt] &= 4-4i-1\\[5pt] &= 3-4i\,\textrm{.} \end{align}

After that, we calculate the remaining product,

\displaystyle \begin{align}

(1+i)(3-4i) &= 1\cdot3 - 1\cdot 4i + i\cdot 3 - i\cdot 4i\\[5pt] &= 3-4i+3i-4i^2\\[5pt] &= 3+(-4+3)i-4\cdot (-1)\\[5pt] &= 3-i+4\\[5pt] &= 7-i\,\textrm{.} \end{align}