Solution 2.2:3a

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Lösning 2.2:3a moved to Solution 2.2:3a: Robot: moved page)
Current revision (14:04, 28 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
The secret behind a successful substitution is to be able to recognize the integral as an expression of the type
-
<center> [[Image:2_2_3a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\int \left( \begin{matrix}
 +
\text{an expression}\\
 +
\text{in u}
 +
\end{matrix}\right)\cdot u'\,dx\,,</math>}}
 +
 
 +
where <math>u=u(x)</math> is the actual substitution. In the integral
 +
 
 +
{{Displayed math||<math>\int 2x\sin x^2\,dx</math>}}
 +
 
 +
we see that the expression <math>x^2</math> is the argument for the sine function, as the same time as its derivative <math>\bigl(x^2\bigr)'=2x</math> stands as a factor in front of sine. Therefore, if we set <math>u=x^2</math>, the integral, the integral will be of the form
 +
 
 +
{{Displayed math||<math>\int u'\sin u\,dx\,\textrm{.}</math>}}
 +
 
 +
Thus, we can use <math>u=x^2</math> for the substitution,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\int 2x\sin x^2\,dx
 +
&=\left\{\begin{align}
 +
u &= x^2\\[5pt]
 +
du &= 2x\,dx
 +
\end{align}\right\} = \int{\sin u\,du}\\[5pt]
 +
&= -\cos u+C = -\cos x^2 + C\,\textrm{.}
 +
\end{align}</math>}}

Current revision

The secret behind a successful substitution is to be able to recognize the integral as an expression of the type

\displaystyle \int \left( \begin{matrix}

\text{an expression}\\ \text{in u} \end{matrix}\right)\cdot u'\,dx\,,

where \displaystyle u=u(x) is the actual substitution. In the integral

\displaystyle \int 2x\sin x^2\,dx

we see that the expression \displaystyle x^2 is the argument for the sine function, as the same time as its derivative \displaystyle \bigl(x^2\bigr)'=2x stands as a factor in front of sine. Therefore, if we set \displaystyle u=x^2, the integral, the integral will be of the form

\displaystyle \int u'\sin u\,dx\,\textrm{.}

Thus, we can use \displaystyle u=x^2 for the substitution,

\displaystyle \begin{align}

\int 2x\sin x^2\,dx &=\left\{\begin{align} u &= x^2\\[5pt] du &= 2x\,dx \end{align}\right\} = \int{\sin u\,du}\\[5pt] &= -\cos u+C = -\cos x^2 + C\,\textrm{.} \end{align}