Solution 2.1:3c

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Lösning 2.1:3c moved to Solution 2.1:3c: Robot: moved page)
Current revision (13:19, 21 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we multiply the factors in the integrand together and use the power laws,
-
<center> [[Image:2_1_3c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
 +
\int e^{2x}\bigl(e^x+1\bigr)\,dx
 +
&= \int\bigl(e^{2x}e^{x} + e^{2x}\bigr)\,dx\\[5pt]
 +
&= \int\bigl(e^{2x+x} + e^{2x}\bigr)\,dx\\[5pt]
 +
&= \int{\bigl(e^{3x} + e^{2x}\bigr)}\,dx\,,
 +
\end{align}</math>}}
 +
 
 +
we obtain a standard integral with two terms of the type <math>e^{ax}</math>, where
 +
<math>a</math> is a constant. The indefinite integral is therefore
 +
 
 +
{{Displayed math||<math>\int \bigl(e^{3x}+e^{2x}\bigr)\,dx = \frac{e^{3x}}{3} + \frac{e^{2x}}{2} + C\,,</math>}}
 +
 
 +
where <math>C</math> is an arbitrary constant.

Current revision

If we multiply the factors in the integrand together and use the power laws,

\displaystyle \begin{align}

\int e^{2x}\bigl(e^x+1\bigr)\,dx &= \int\bigl(e^{2x}e^{x} + e^{2x}\bigr)\,dx\\[5pt] &= \int\bigl(e^{2x+x} + e^{2x}\bigr)\,dx\\[5pt] &= \int{\bigl(e^{3x} + e^{2x}\bigr)}\,dx\,, \end{align}

we obtain a standard integral with two terms of the type \displaystyle e^{ax}, where \displaystyle a is a constant. The indefinite integral is therefore

\displaystyle \int \bigl(e^{3x}+e^{2x}\bigr)\,dx = \frac{e^{3x}}{3} + \frac{e^{2x}}{2} + C\,,

where \displaystyle C is an arbitrary constant.