Solution 1.2:3c

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Lösning 1.2:3c moved to Solution 1.2:3c: Robot: moved page)
Current revision (12:55, 15 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
We can write the expression as
-
<center> [[Image:1_2_3c-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\frac{1}{x\sqrt{1-x^{2}}} = \bigl(x\sqrt{1-x^2}\,\bigr)^{-1}\,\textrm{,}</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:1_2_3c-2(2).gif]] </center>
+
and then we see that we have "something raised to -1", which can be differentiated one step by using the chain rule,
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}
 +
&= {}\rlap{-1\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-2}\bigl(\bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)'}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt]
 +
&= -\frac{1}{\bigl(x\sqrt{1-x^2}\bigr)^2}\cdot \bigl(x\sqrt{1-x^2}\bigr)'\\[5pt]
 +
&= -\frac{1}{x^2(1-x^2)}\cdot\bigl(x\sqrt{1-x^2}\bigr)'\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
The next step is to differentiate the product <math>x\cdot\sqrt{1-x^2}</math> using the product rule,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{}
 +
&= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \Bigl( (x)'\sqrt{1-x^2} + x(\sqrt{1-x^2})'\Bigr)}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt]
 +
&= -\frac{1}{x^2(1-x^2)}\cdot \Bigl(1\cdot\sqrt{1-x^2} + x\cdot (\sqrt{1-x^2})'\Bigr)\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
The expression <math>\sqrt{1-x^2}</math> is of the type "square root of something", so we use the chain rule to differentiate,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{}
 +
&= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)\\[5pt]
 +
&= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}\cdot ( -2x)\Bigr)\\[5pt]
 +
&= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} - \frac{x^2}{\sqrt{1-x^2}}\Bigr)\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
We write the expression on the right over a common denominator,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{}
 +
&= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \frac{\bigl(\sqrt{1-x^2}\bigr)^2-x^2}{\sqrt{1-x^2}}}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt]
 +
&= -\frac{1}{x^2(1-x^2)}\cdot \frac{1-x^2-x^2}{\sqrt{1-x^2}}\\[5pt]
 +
&= -\frac{1-2x^2}{x^2(1-x^2)^{3/2}}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
 
 +
Note: When we make simplifications of the form <math>\bigl(\sqrt{1-x^2} \bigr)^2 = 1-x^2</math>, we assume that both sides are well defined (i.e. in this case that <math>x</math> lies between -1 and 1).

Current revision

We can write the expression as

\displaystyle \frac{1}{x\sqrt{1-x^{2}}} = \bigl(x\sqrt{1-x^2}\,\bigr)^{-1}\,\textrm{,}

and then we see that we have "something raised to -1", which can be differentiated one step by using the chain rule,

\displaystyle \begin{align}

\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1} &= {}\rlap{-1\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-2}\bigl(\bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)'}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt] &= -\frac{1}{\bigl(x\sqrt{1-x^2}\bigr)^2}\cdot \bigl(x\sqrt{1-x^2}\bigr)'\\[5pt] &= -\frac{1}{x^2(1-x^2)}\cdot\bigl(x\sqrt{1-x^2}\bigr)'\,\textrm{.} \end{align}

The next step is to differentiate the product \displaystyle x\cdot\sqrt{1-x^2} using the product rule,

\displaystyle \begin{align}

\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{} &= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \Bigl( (x)'\sqrt{1-x^2} + x(\sqrt{1-x^2})'\Bigr)}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt] &= -\frac{1}{x^2(1-x^2)}\cdot \Bigl(1\cdot\sqrt{1-x^2} + x\cdot (\sqrt{1-x^2})'\Bigr)\,\textrm{.} \end{align}

The expression \displaystyle \sqrt{1-x^2} is of the type "square root of something", so we use the chain rule to differentiate,

\displaystyle \begin{align}

\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{} &= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)\\[5pt] &= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}\cdot ( -2x)\Bigr)\\[5pt] &= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} - \frac{x^2}{\sqrt{1-x^2}}\Bigr)\,\textrm{.} \end{align}

We write the expression on the right over a common denominator,

\displaystyle \begin{align}

\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{} &= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \frac{\bigl(\sqrt{1-x^2}\bigr)^2-x^2}{\sqrt{1-x^2}}}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt] &= -\frac{1}{x^2(1-x^2)}\cdot \frac{1-x^2-x^2}{\sqrt{1-x^2}}\\[5pt] &= -\frac{1-2x^2}{x^2(1-x^2)^{3/2}}\,\textrm{.} \end{align}


Note: When we make simplifications of the form \displaystyle \bigl(\sqrt{1-x^2} \bigr)^2 = 1-x^2, we assume that both sides are well defined (i.e. in this case that \displaystyle x lies between -1 and 1).