Solution 1.2:3b
From Förberedande kurs i matematik 2
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:1_2_3b-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:1_2_3b-2(2).gif </center> {{NAVCONTENT_STOP}}) |
|||
(3 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | The outer function in the expression is "the square root of something", |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\sqrt{\bbox[#FFEEAA;,1.5pt]{\frac{x+1}{x-1} } }</math>}} |
- | {{ | + | |
- | + | and differentiating with the chain rule gives | |
- | {{ | + | |
+ | {{Displayed math||<math>\frac{d}{dx}\,\sqrt{\bbox[#FFEEAA;,1.5pt]{\frac{x+1}{x-1} } } = \frac{1}{2\sqrt{\bbox[#FFEEAA;,1.5pt]{\dfrac{x+1}{x-1} } } }\cdot \Bigl( \frac{x+1}{x-1}\Bigr)'\,\textrm{.}</math>}} | ||
+ | |||
+ | We establish the inner derivative by using the quotient rule, | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \frac{d}{dx}\,\sqrt{\frac{x+1}{x-1}} | ||
+ | &= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot\frac{(x+1)'\cdot (x-1) - (x+1)\cdot (x-1)'}{(x-1)^2}\\[5pt] | ||
+ | &= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot \frac{1\cdot (x-1) - (x+1)\cdot 1}{(x-1)^2}\\[5pt] | ||
+ | &= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot \frac{-2}{(x-1)^2}\\[5pt] | ||
+ | &= -\sqrt{\frac{x-1}{x+1}}\cdot\frac{1}{(x-1)^2}\\[5pt] | ||
+ | &= -\frac{1}{(x-1)^{3/2}\sqrt{x+1}}\,, | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | where we have used the simplification | ||
+ | |||
+ | {{Displayed math||<math>\frac{\sqrt{x-1}}{(x-1)^2} | ||
+ | = \frac{(x-1)^{1/2}}{(x-1)^2} | ||
+ | = (x-1)^{1/2-2} | ||
+ | = (x-1)^{-3/2} | ||
+ | = \frac{1}{(x-1)^{3/2}}\,\textrm{.}</math>}} |
Current revision
The outer function in the expression is "the square root of something",
\displaystyle \sqrt{\bbox[#FFEEAA;,1.5pt]{\frac{x+1}{x-1} } } |
and differentiating with the chain rule gives
\displaystyle \frac{d}{dx}\,\sqrt{\bbox[#FFEEAA;,1.5pt]{\frac{x+1}{x-1} } } = \frac{1}{2\sqrt{\bbox[#FFEEAA;,1.5pt]{\dfrac{x+1}{x-1} } } }\cdot \Bigl( \frac{x+1}{x-1}\Bigr)'\,\textrm{.} |
We establish the inner derivative by using the quotient rule,
\displaystyle \begin{align}
\frac{d}{dx}\,\sqrt{\frac{x+1}{x-1}} &= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot\frac{(x+1)'\cdot (x-1) - (x+1)\cdot (x-1)'}{(x-1)^2}\\[5pt] &= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot \frac{1\cdot (x-1) - (x+1)\cdot 1}{(x-1)^2}\\[5pt] &= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot \frac{-2}{(x-1)^2}\\[5pt] &= -\sqrt{\frac{x-1}{x+1}}\cdot\frac{1}{(x-1)^2}\\[5pt] &= -\frac{1}{(x-1)^{3/2}\sqrt{x+1}}\,, \end{align} |
where we have used the simplification
\displaystyle \frac{\sqrt{x-1}}{(x-1)^2}
= \frac{(x-1)^{1/2}}{(x-1)^2} = (x-1)^{1/2-2} = (x-1)^{-3/2} = \frac{1}{(x-1)^{3/2}}\,\textrm{.} |