Solution 1.2:2d
From Förberedande kurs i matematik 2
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:1_2_2d.gif </center> {{NAVCONTENT_STOP}}) |
m |
||
(3 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | We can see the expression as "ln of something", |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\ln \bbox[#FFEEAA;,1.5pt]{\phantom{\ln x}}\,,</math>}} |
+ | |||
+ | where "something" is <math>\ln x</math>. | ||
+ | |||
+ | Because we have a compound expression, we use the chain rule and obtain, roughly speaking, the outer derivative multiplied by the inner derivative, | ||
+ | |||
+ | {{Displayed math||<math>\frac{d}{dx}\,\ln \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} = \frac{1}{\bbox[#FFEEAA;,1.5pt]{\,\ln x\,}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} \bigr)'\,,</math>}} | ||
+ | |||
+ | where the first factor on the right-hand side <math>1/\bbox[#FFEEAA;,1.5pt]{\,\ln x\,}</math> is the outer derivative of <math>\ln \bbox[#FFEEAA;,1.5pt]{\,\ln x\,}</math> and the other factor <math>\bigl( \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} \bigr)'</math> is the inner derivative. Thus, we get | ||
+ | |||
+ | {{Displayed math||<math>\frac{d}{dx}\,\ln\ln x = \frac{1}{\ln x}\cdot \frac{1}{x} = \frac{1}{x\ln x}\,\textrm{.}</math>}} |
Current revision
We can see the expression as "ln of something",
\displaystyle \ln \bbox[#FFEEAA;,1.5pt]{\phantom{\ln x}}\,, |
where "something" is \displaystyle \ln x.
Because we have a compound expression, we use the chain rule and obtain, roughly speaking, the outer derivative multiplied by the inner derivative,
\displaystyle \frac{d}{dx}\,\ln \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} = \frac{1}{\bbox[#FFEEAA;,1.5pt]{\,\ln x\,}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} \bigr)'\,, |
where the first factor on the right-hand side \displaystyle 1/\bbox[#FFEEAA;,1.5pt]{\,\ln x\,} is the outer derivative of \displaystyle \ln \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} and the other factor \displaystyle \bigl( \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} \bigr)' is the inner derivative. Thus, we get
\displaystyle \frac{d}{dx}\,\ln\ln x = \frac{1}{\ln x}\cdot \frac{1}{x} = \frac{1}{x\ln x}\,\textrm{.} |