Solution 1.1:2f

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Lösning 1.1:2f moved to Solution 1.1:2f: Robot: moved page)
Current revision (12:47, 14 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
We can rewrite the function using a trigonometric addition formula,
-
<center> [[Image:1_1_2f.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>f(x) = \cos\Bigl(x+\frac{\pi}{3}\Bigr) = \cos x\cdot\cos \frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3}\,\textrm{.}</math>}}
 +
 
 +
If we now differentiate this expression, <math>\cos (\pi/3)</math> and <math>\sin (\pi/3)</math> are constants and we obtain
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
f^{\,\prime}(x)
 +
&= \frac{d}{dx}\,\Bigl(\cos x\cdot\cos\frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3} \Bigr)\\[5pt]
 +
&= \cos\frac{\pi}{3}\cdot\frac{d}{dx}\,\cos x - \sin\frac{\pi}{3}\cdot\frac{d}{dx}\,\sin x\\[5pt]
 +
&= \cos\frac{\pi}{3}\cdot (-\sin x) - \sin\frac{\pi}{3}\cdot\cos x\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
If we then use the addition formula in reverse, this gives
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
f^{\,\prime}(x)
 +
&= -\Bigl(\sin x\cdot\cos\frac{\pi}{3} + \cos x\cdot\sin\frac{\pi}{3}\Bigr)\\[5pt]
 +
&= -\sin\Bigl(x+\frac{\pi}{3}\Bigr)\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
 
 +
Note: In the next section, we will go through differentiation rules which make it possible to differentiate the expression directly without rewriting in this way.

Current revision

We can rewrite the function using a trigonometric addition formula,

\displaystyle f(x) = \cos\Bigl(x+\frac{\pi}{3}\Bigr) = \cos x\cdot\cos \frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3}\,\textrm{.}

If we now differentiate this expression, \displaystyle \cos (\pi/3) and \displaystyle \sin (\pi/3) are constants and we obtain

\displaystyle \begin{align}

f^{\,\prime}(x) &= \frac{d}{dx}\,\Bigl(\cos x\cdot\cos\frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3} \Bigr)\\[5pt] &= \cos\frac{\pi}{3}\cdot\frac{d}{dx}\,\cos x - \sin\frac{\pi}{3}\cdot\frac{d}{dx}\,\sin x\\[5pt] &= \cos\frac{\pi}{3}\cdot (-\sin x) - \sin\frac{\pi}{3}\cdot\cos x\,\textrm{.} \end{align}

If we then use the addition formula in reverse, this gives

\displaystyle \begin{align}

f^{\,\prime}(x) &= -\Bigl(\sin x\cdot\cos\frac{\pi}{3} + \cos x\cdot\sin\frac{\pi}{3}\Bigr)\\[5pt] &= -\sin\Bigl(x+\frac{\pi}{3}\Bigr)\,\textrm{.} \end{align}


Note: In the next section, we will go through differentiation rules which make it possible to differentiate the expression directly without rewriting in this way.