Solution 1.1:2d

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:1_1_2d.gif </center> {{NAVCONTENT_STOP}})
Current revision (11:58, 14 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we write <math>\sqrt{x}</math> in power form <math>x^{1/2}</math>, we see that the square root is a function having the appearance of <math>x^n</math> and its derivative is therefore equal to
-
<center> [[Bild:1_1_2d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>f^{\,\prime}(x) = \frac{d}{dx}\,\sqrt{x} = \frac{d}{dx}\,x^{1/2} = \tfrac{1}{2}x^{1/2-1} = \tfrac{1}{2}x^{-1/2}\,\textrm{.}</math>}}
 +
 
 +
The answer can also be written as
 +
 
 +
{{Displayed math||<math>f^{\,\prime}(x) = \frac{1}{2\sqrt{x}}</math>}}
 +
 
 +
since <math>x^{-1/2} = \bigl(x^{1/2}\bigr)^{-1} = \bigl(\sqrt{x}\,\bigr)^{-1} = \frac{1}{\sqrt{x}}\,</math>.

Current revision

If we write \displaystyle \sqrt{x} in power form \displaystyle x^{1/2}, we see that the square root is a function having the appearance of \displaystyle x^n and its derivative is therefore equal to

\displaystyle f^{\,\prime}(x) = \frac{d}{dx}\,\sqrt{x} = \frac{d}{dx}\,x^{1/2} = \tfrac{1}{2}x^{1/2-1} = \tfrac{1}{2}x^{-1/2}\,\textrm{.}

The answer can also be written as

\displaystyle f^{\,\prime}(x) = \frac{1}{2\sqrt{x}}

since \displaystyle x^{-1/2} = \bigl(x^{1/2}\bigr)^{-1} = \bigl(\sqrt{x}\,\bigr)^{-1} = \frac{1}{\sqrt{x}}\,.