Solution 1.1:2c

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Lösning 1.1:2c moved to Solution 1.1:2c: Robot: moved page)
Current revision (11:52, 14 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
We differentiate term by term,
-
<center> [[Image:1_1_2c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
 +
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(e^x-\ln x\bigr)\\[5pt]
 +
&= \frac{d}{dx}\,e^{x} - \frac{d}{dx}\,\ln x\\[5pt]
 +
&= e^{x}-\frac{1}{x}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
 
 +
Note: Because <math>\ln x</math> is not defined for <math>x\le 0</math> we assume implicitly that <math>x > 0</math>.

Current revision

We differentiate term by term,

\displaystyle \begin{align}

f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(e^x-\ln x\bigr)\\[5pt] &= \frac{d}{dx}\,e^{x} - \frac{d}{dx}\,\ln x\\[5pt] &= e^{x}-\frac{1}{x}\,\textrm{.} \end{align}


Note: Because \displaystyle \ln x is not defined for \displaystyle x\le 0 we assume implicitly that \displaystyle x > 0.