Solution 1.1:2c
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
(2 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | We differentiate term by term, |
- | + | ||
- | {{ | + | {{Displayed math||<math>\begin{align} |
+ | f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(e^x-\ln x\bigr)\\[5pt] | ||
+ | &= \frac{d}{dx}\,e^{x} - \frac{d}{dx}\,\ln x\\[5pt] | ||
+ | &= e^{x}-\frac{1}{x}\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | |||
+ | Note: Because <math>\ln x</math> is not defined for <math>x\le 0</math> we assume implicitly that <math>x > 0</math>. |
Current revision
We differentiate term by term,
\displaystyle \begin{align}
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(e^x-\ln x\bigr)\\[5pt] &= \frac{d}{dx}\,e^{x} - \frac{d}{dx}\,\ln x\\[5pt] &= e^{x}-\frac{1}{x}\,\textrm{.} \end{align} |
Note: Because \displaystyle \ln x is not defined for \displaystyle x\le 0 we assume implicitly that \displaystyle x > 0.