Lösung 2.3:6a

Aus Online Mathematik Brückenkurs 1

Version vom 12:41, 19. Aug. 2009 von Tek (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Mit der binomischen Formel \displaystyle (a+b)^2=a^2+2ab+b^2 sehen wir, dass der quadratische Ausdruck \displaystyle (x-1)^{2}\, ist

\displaystyle x^{2}-2x+1 = (x-1)^{2}\,\textrm{.}

Die Funktion nimmt ihren kleinsten Wert, null an, wenn \displaystyle x-1=0, also wenn \displaystyle x=1. Alle anderen Werten von \displaystyle x-1 ergeben einen positiven Ausdruck \displaystyle (x-1)^{2}.


Hinweis: Zeichnen wir die Graph von \displaystyle y=(x-1)^{2}, sehen wir dass die Funktion ein Minimum in \displaystyle x=1\, hat.


[Image]

Der Graph von f(x) = (x - 1)²