Lösung 2.1:5c
Aus Online Mathematik Brückenkurs 1
Der Bruch kann vereinfacht werden, falls es möglich ist, gemeinsame Faktoren in Zähler und Nenner zu kürzen. Nach der binomischen Formel können wir den Zähler und den Nenner vollständig faktorisieren.
\displaystyle \begin{align}
3x^{2}-12 &= 3(x^{2}-4) = 3(x+2)(x-2)\,,\\ x^{2}-1 &= (x+1)(x-1) \,\textrm{.} \end{align} |
Als Ausdruck ergibt sich:
\displaystyle \frac{3(x+2)(x-2)(x+1)(x-1)}{(x+1)(x+2)} = 3(x-2)(x-1)=3x^{2}-9x+6\,\textrm{.} |