Lösung 4.2:5d

Aus Online Mathematik Brückenkurs 1

Version vom 13:27, 18. Jun. 2009 von Markus.bez (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Indem wir 360° von 495° subtrahieren, ändern wir nicht den Wert des Tangens

\displaystyle \tan 495^{\circ} = \tan (495^{\circ} - 360^{\circ}) = \tan 135^{\circ}\,\textrm{.}

Von Übung a wissen wir, dass \displaystyle \cos 135^{\circ} = -1/\!\sqrt{2} und \displaystyle \sin 135^{\circ} = 1/\!\sqrt{2}\,. Wir erhalten also

\displaystyle \tan 135^{\circ} = \frac{\sin 135^{\circ}}{\cos 135^{\circ}} = \frac{\dfrac{1}{\sqrt{2}}}{-\dfrac{1}{\sqrt{2}}} = -1\,\textrm{.}