Lösung 2.1:5c

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche

Der Bruch kann vereinfacht werden, falls es möglich ist, gemeinsame Faktoren in Zähler und Nenner zu kürzen. Mach der binomischen Formel können wir den Zähler und den Nenner vollständig faktorisieren.

\displaystyle \begin{align}

3x^{2}-12 &= 3(x^{2}-4) = 3(x+2)(x-2)\,,\\ x^{2}-1 &= (x+1)(x-1) \,\textrm{.} \end{align}

Als Ausdruck ergibt sich:

\displaystyle \frac{3(x+2)(x-2)(x+1)(x-1)}{(x+1)(x+2)} = 3(x-2)(x-1)=3x^{2}-9x+6\,\textrm{.}