2.3 Quadratische Gleichungen
Aus Online Mathematik Brückenkurs 1
Theorie | Übungen |
Inhalt:
- Completing the square method
- Quadratic equations
- Factorising
- Parabolas
Lernziele:
Nach diesem Abschnitt sollten Sie folgendes können:
- Complete the square for expressions of degree two (second degree).
- Solve quadratic equations by completing the square (not using a standard formula) and know how to check the answer.
- Factorise expressions of the second degree. (when possible).
- Directly solve factorised or almost factorised quadratic equations.
- Determine the minimum / maximum value of an expression of degree two.
- Sketch parabolas by completing the square method.
Quadratische Gleichungen
Eine quadratische Gleichung kann wie
\displaystyle x^2+px+q=0 |
geschrieben werden, wo \displaystyle x unbekannt ist, und \displaystyle p und \displaystyle q Konstanten sind.
Einfache quadratische Gleichungen kann man lösen, indem man einfach Wurzeln berechnet.
Die Gleichung \displaystyle x^2=a wo \displaystyle a \ge 0, hat zwei Lösungen (Wurzeln), nämlich \displaystyle x=\sqrt{a} und \displaystyle x=-\sqrt{a}.
Beispiel 1
- \displaystyle x^2 = 4 \quad has the roots \displaystyle x=\sqrt{4} = 2 and \displaystyle x=-\sqrt{4}= -2.
- \displaystyle 2x^2=18 \quad is rewritten as \displaystyle x^2=9 , and has the roots \displaystyle x=\sqrt9 = 3 and \displaystyle x=-\sqrt9 = -3.
- \displaystyle 3x^2-15=0 \quad can be rewritten as \displaystyle x^2=5 and has the roots \displaystyle x=\sqrt5 \approx 2{,}236 and \displaystyle x=-\sqrt5 \approx -2{,}236.
- \displaystyle 9x^2+25=0\quad has no solutions because the left-hand side will always be greater than or equal to 25 regardless of the value of \displaystyle x (the square \displaystyle x^2 is always greater than or equal to zero).
Beispiel 2
- Solve the equation \displaystyle \ (x-1)^2 = 16.
By considering \displaystyle x-1 as the unknown and taking the roots one finds the equation has two solutions- \displaystyle x-1 =\sqrt{16} = 4\, which gives that \displaystyle x=1+4=5,
- \displaystyle x-1 = -\sqrt{16} = -4\, which gives that \displaystyle x=1-4=-3.
- Solve the equation \displaystyle \ 2(x+1)^2 -8=0.
Move the term \displaystyle 8 over to the right-hand side and divide both sides by \displaystyle 2,\displaystyle (x+1)^2=4 \; \mbox{.} Taking the roots gives:
- \displaystyle x+1 =\sqrt{4} = 2, \quad \mbox{dvs.} \quad x=-1+2=1\,\mbox{,}
- \displaystyle x+1 = -\sqrt{4} = -2, \quad \mbox{dvs.} \quad x=-1-2=-3\,\mbox{.}
To solve a quadratic equation generally, we use a technique called completing the square.
If we consider the rule for expanding a quadratic,
\displaystyle x^2 + 2ax + a^2 = (x+a)^2 |
and subtract the \displaystyle a^2 from both sides we get
Completing the square:
\displaystyle x^2 +2ax = (x+a)^2 -a^2 |
Beispiel 3
- Solve the equation \displaystyle \ x^2 +2x -8=0.
One completes the square for \displaystyle x^2+2x (use \displaystyle a=1 in the formula)\displaystyle \underline{\vphantom{(}x^2+2x} -8 = \underline{(x+1)^2-1^2} -8 = (x+1)^2-9, where the underlined terms are those involved in the completion of the square. Thus the equation can be written as
\displaystyle (x+1)^2 -9 = 0, which we solve by taking roots
- \displaystyle x+1 =\sqrt{9} = 3\, and hence \displaystyle x=-1+3=2,
- \displaystyle x+1 =-\sqrt{9} = -3\, and hence \displaystyle x=-1-3=-4.
- Solve the equation \displaystyle \ 2x^2 -2x - \frac{3}{2} = 0.
Divide both sides by 2\displaystyle x^2-x-\textstyle\frac{3}{4}=0\mbox{.} Complete the square of the left-hand side (use \displaystyle a=-\tfrac{1}{2})
\displaystyle \textstyle\underline{\vphantom{\bigl(\frac{3}{4}}x^2-x} -\frac{3}{4} = \underline{\bigl(x-\frac{1}{2}\bigr)^2 - \bigl(-\frac{1}{2}\bigr)^2} -\frac{3}{4}= \bigl(x-\frac{1}{2}\bigr)^2 -1 and this gives us the equation
\displaystyle \textstyle\bigl(x-\frac{1}{2}\bigr)^2 - 1=0\mbox{.} Taking roots gives
- \displaystyle x-\tfrac{1}{2} =\sqrt{1} = 1, \quad i.e. \displaystyle \quad x=\tfrac{1}{2}+1=\tfrac{3}{2},
- \displaystyle x-\tfrac{1}{2}= -\sqrt{1} = -1, \quad i.e. \displaystyle \quad x=\tfrac{1}{2}-1= -\tfrac{1}{2}.
Hint:
Keep in mind that we can always test our solution to an equation by inserting the value in the equation and see if the equation is satisfied. We should always do this to check for any careless mistakes. For example, in 3a above, we have two cases to consider. We call the left- and right-hand sides LHS and RHS respectively:
- \displaystyle x = 2 gives that \displaystyle \mbox{LHS } = 2^2 +2\cdot 2 - 8 = 4+4-8 = 0 = \mbox{RHS}.
- \displaystyle x = -4 gives that \displaystyle \mbox{LHS } = (-4)^2 + 2\cdot(-4) -8 = 16-8-8 = 0 = \mbox{RHS}.
In both cases we arrive at LHS = RHS. The equation is satisfied in both cases.
Using the completing the square method it is possible to show that the general quadratic equation
\displaystyle x^2+px+q=0 |
has the solutions
\displaystyle x = - \displaystyle\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2-q} |
provided that the term inside the root sign is not negative.
Sometimes one can factorise the equations directly and thus immediately see what the solutions are.
Beispiel 4
- Solve the equation \displaystyle \ x^2-4x=0.
On the left-hand side, we can factor out an \displaystyle x- \displaystyle x(x-4)=0.
- \displaystyle x =0,\quad or
- \displaystyle x-4=0\quad which gives \displaystyle \quad x=4.
Parabolas
Functions
\displaystyle \eqalign{y&=x^2-2x+5\cr y&=4-3x^2\cr y&=\textstyle\frac{1}{5}x^2 +3x} |
are examples of functions of the second degree. In general, a function of the second degree can be written as
\displaystyle y=ax^2+bx+c |
where \displaystyle a, \displaystyle b and \displaystyle c are constants, and where \displaystyle a\ne0.
The graph for a function of the second degree is known as a parabola and the figures show the graphs of two typical parabolas \displaystyle y=x^2 and \displaystyle y=-x^2.
As the expression \displaystyle x^2 is minimal when \displaystyle x=0 the parabola \displaystyle y=x^2 has a minimum when \displaystyle x=0 and the parabola \displaystyle y=-x^2 has a maximum when \displaystyle x=0.
Note also that parabolas above are symmetrical about the \displaystyle y-axis, as the value of \displaystyle x^2 does not depend on the sign of \displaystyle x.
Beispiel 5
|
|
|
|
|
|
All sorts of parabolas can be handled by the completing the square method.
Beispiel 6
Sketch the parabola \displaystyle \ y=x^2+2x+2.
we see from the resulting expression \displaystyle y= (x+1)^2+1 that the parabola has been displaced one unit to the left along the \displaystyle x-direction, compared to \displaystyle y=x^2 (as it stands \displaystyle (x+1)^2 instead of \displaystyle x^2) and one unit upwards along the \displaystyle y-direction |
|
Beispiel 7
Determine where the parabola \displaystyle \,y=x^2-4x+3\, cuts the \displaystyle x-axis.
A point is on the \displaystyle x-axis if its \displaystyle y-coordinate is zero, and the points on the parabola which have \displaystyle y=0 have an \displaystyle x-coordinate that satisfies the equation
\displaystyle x^2-4x+3=0\mbox{.} |
Complete the square for the left-hand side,
\displaystyle x^2-4x+3=(x-2)^2-2^2+3=(x-2)^2-1 |
and this gives the equation
\displaystyle (x-2)^2= 1 \; \mbox{.} |
After taking roots we get solutions
- \displaystyle x-2 =\sqrt{1} = 1,\quad i.e. \displaystyle \quad x=2+1=3,
- \displaystyle x-2 = -\sqrt{1} = -1,\quad i.e. \displaystyle \quad x=2-1=1.
The parabola cuts the \displaystyle x-axis in points \displaystyle (1,0) and \displaystyle (3,0).
Beispiel 8
Determine the minimum value of the expression \displaystyle \,x^2+8x+19\,.
We complete the square
\displaystyle x^2 +8x+19=(x+4)^2 -4^2 +19 = (x+4)^2 +3 |
and then we see that the expression must be at least equal to 3 because the square \displaystyle (x+4)^2 is always greater than or equal to 0 regardless of what \displaystyle x is.
In the figure below, we see that the whole parabola \displaystyle y=x^2+8x+19 lies above the \displaystyle x-axis and has a minimum 3 at \displaystyle x=-4.
Tipps fürs lernen
Diagnostische Prüfung und Schlussprüfung
Nachdem Du fertig mit der Theorie bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest die links zu den Prüfungen in Deiner "Student Lounge".
Bedenke folgendes:
Devote much time to doing algebra! Algebra is the alphabet of mathematics. Once you understand algebra, your will enhance your understanding of statistics, areas, volumes and geometry.
Reviews
For those of you who want to deepen your studies or need more detailed explanations consider the following references
Learn more about quadratic equations in the English Wikipedia
Learn more about quadratic equations in mathworld
101 uses of a quadratic equation - by Chris Budd and Chris Sangwin
Nützliche Websites