Aus Online Mathematik Brückenkurs 1
Übung 4.1:1
Write in degrees and radians
a)
| 41 revolution
| b)
| 83 revolution
|
c)
| −32 revolution
| d)
| 1297 revolution
|
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Exrecise 4.1:2
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Übung 4.1:3
Determine the length of the side marked x.
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Übung 4.1:4
a)
| Determine the distance between the points (1,1) and (5,4).
|
b)
| Determine the distance between the points(-2,5) and (3,-1).
|
c)
| Find the point on the x-axis which lies as far from the point (3,3) as from (5,1).
|
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Übung 4.1:5
a)
| Determine the equation of a circle having its centre at (1,2) and radius 2.
|
b)
| Determine the equation of a circle having its centre at (2,-1) and which contains the point (-1,1).
|
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Übung 4.1:6
Sketch the following circles
a)
| x2+y2=9
| b)
| (x−1)2+(y−2)2=3
|
c)
| (3x−1)2+(3y+7)2=10
|
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Übung 4.1:7
Sketch the following circles
a)
| x2+2x+y2−2y=1
| b)
| x2+y2+4y=0
|
c)
| x2−2x+y2+6y=−3
| d)
| x2−2x+y2+2y=−2
|
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Übung 4.1:8
How many revolutions does a wheel of radius 50 cm make when it rolls 10m?
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Übung 4.1:9
On a clock, the second hand is 8 cm long. How large an area does it sweep through in 10 seconds?
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Übung 4.1:10
A washing line of length 5.4 m hangs between two vertical trees that are at a distance of 4.8 m from each other. One end of the line is fixed 0.6 m higher than the other, and a jacket hangs from a
hanger 1.2 m from the tree where the line has its lower point of attachment. Determine how far below the
lower attachement point the hanger is hanging. (That is, the distance x in the figure).
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen