1.3 Übungen
Aus Online Mathematik Brückenkurs 1
Übung 1.3:1
Calculate
a) | \displaystyle 2^3\cdot3^2 | b) | \displaystyle 3^5\cdot9^{-2} | c) | \displaystyle (-5)^3 | d) | \displaystyle \Bigl(\displaystyle \frac{2}{3}\Bigr)^{-3} |
Answer
Solution a
Solution b
Solution c
Solution d
Übung 1.3:2
Write each of the following as a power of \displaystyle 2
a) | \displaystyle 2\cdot4\cdot8 | b) | \displaystyle 0\textrm{.}25 | c) | \displaystyle 1 |
Answer
Solution a
Solution b
Solution c
Übung 1.3:3
Write each of the following as a power of \displaystyle 3
a) | \displaystyle \displaystyle \frac{1}{3} | b) | \displaystyle 243 | c) | \displaystyle 9^2 | d) | \displaystyle \displaystyle \frac{1}{27} | e) | \displaystyle \displaystyle \frac{3}{9^2} |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Übung 1.3:4
Calculate
a) | \displaystyle 2^{9}\cdot2^{-7} | b) | \displaystyle 3^{13}\cdot9^{-3}\cdot27^{\,-2} | c) | \displaystyle \displaystyle \frac{5^{12}}{5^{-4}}\cdot(5^{2})^{-6} |
d) | \displaystyle 2^{2^{\scriptstyle3}}\cdot(-2)^{\scriptstyle-4} | e) | \displaystyle 625\cdot(5^{8}+5^{9})^{-1} |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Übung 1.3:5
Calculate
a) | \displaystyle 4^{1/2} | b) | \displaystyle 4^{-1/2} | c) | \displaystyle 9^{3/2} |
d) | \displaystyle \left(47^{2/3} \right) ^{3} | e) | \displaystyle 3^{1\textrm{.}4}\cdot3^{0\textrm{.}6} | f) | \displaystyle \bigl( 125 ^{1/3} \bigr)^2\cdot \bigl( 27^{1/3} \bigr)^{-2}\cdot9^{1/2} |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Übung 1.3:6
Determine which is the larger of the two numbers in each of the following cases:
a) | \displaystyle 256^{1/3}\ and \displaystyle \ 200^{1/3} | b) | \displaystyle 0\textrm{.}5^{-3}\ and \displaystyle \ 0\textrm{.}4^{-3} | c) | \displaystyle 0\textrm{.}2^5\ and \displaystyle \ 0\textrm{.}2^{7} |
d) | \displaystyle 400^{1/3}\ and \displaystyle \ \bigl(5^{1/3}\bigr)^{4} | e) | \displaystyle 125^{1/2}\ and \displaystyle \ 625^{1/3} | f) | \displaystyle 2^{56}\ and \displaystyle \ 3^{40} |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f