Lösung 4.4:8a
Aus Online Mathematik Brückenkurs 1
If we use the formula for double angles, \displaystyle \text{sin 2}x=\text{2sin }x\text{ cos }x, and move all the terms over to the left-hand side, the equation becomes
\displaystyle 2\sin x\cos x-\sqrt{2}\cos x=0.
Then, we see that we can take a factor cos x out of both terms,
\displaystyle \cos x\left( 2\sin x-\sqrt{2} \right)=0
and hence divide up the equation into two cases. The equation is satisfied either if
\displaystyle \text{cos }x=0\text{ }
or if
\displaystyle 2\sin x-\sqrt{2}=0.
\displaystyle \text{cos }x=0\text{ }: this equation has the general solution
\displaystyle x=\frac{\pi }{2}+n\pi
(
\displaystyle n
an arbitrary integer)
\displaystyle 2\sin x-\sqrt{2}=0: If we collect
\displaystyle \text{sin }x
on the left-hand side, we obtain the equation
\displaystyle \text{sin }x\text{ }={1}/{\sqrt{2}}\;, which has the general solution
\displaystyle \left\{ \begin{array}{*{35}l}
x=\frac{\pi }{4}+2n\pi \\
x=\frac{3\pi }{4}+2n\pi \\
\end{array} \right.
(
\displaystyle n
an arbitrary integer)
The complete solution of the equation is
\displaystyle \left\{ \begin{array}{*{35}l}
x=\frac{\pi }{4}+2n\pi \\
x=\frac{\pi }{2}+n\pi \\
x=\frac{3\pi }{4}+2n\pi \\
\end{array} \right.
(
\displaystyle n
an arbitrary integer).