Lösung 3.2:5

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche

After squaring both sides, we obtain the equation

Vorlage:Displayed math

and if we expand the right-hand side and then collect the terms, we get

Vorlage:Displayed math

Completing the square of the left-hand side, we obtain

Vorlage:Displayed math

which means that the equation can be written as

Vorlage:Displayed math

and the solutions are therefore

  • \displaystyle x = \frac{7}{2} + \sqrt{\frac{25}{4}} = \frac{7}{2} + \frac{5}{2} = \frac{12}{2} = 6\,,
  • \displaystyle x = \frac{7}{2} - \sqrt{\frac{25}{4}} = \frac{7}{2} - \frac{5}{2} = \frac{2}{2} = 1\,\textrm{.}

Substituting \displaystyle x=1 and \displaystyle x=6 into the quadratic equation (*) shows that we have solved the equation correctly.

  • x = 1: \displaystyle \ \text{LHS} = 3\cdot 1-2 = 1\ and \displaystyle \ \text{RHS} = (2-1)^2 = 1
  • x = 6: \displaystyle \ \text{LHS} = 3\cdot 6-2 = 16\ and \displaystyle \ \text{RHS} = (2-6)^2 = 16

Finally, we need to sort away possible spurious roots to the root equation by verifying the solutions.

  • x = 1: \displaystyle \ \text{LHS} = \sqrt{3\cdot 1-2} = 1\ and \displaystyle \ \text{RHS} = 2-1 = 1
  • x = 6: \displaystyle \ \text{LHS} = \sqrt{3\cdot 6-2} = 4\ and \displaystyle \ \text{RHS} = 2-6 = -4

This shows that the root equation has the solution \displaystyle x=1\,.