Lösung 4.1:7d

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche

We rewrite the equation in standard by completing the square for the x- and y-terms:


\displaystyle x^{2}-2x=\left( x-1 \right)^{2}-1^{2}


\displaystyle y^{2}+2y=\left( y+1 \right)^{2}-1^{2}


Now, the equation is


\displaystyle \begin{align} & \left( x-1 \right)^{2}-1+\left( y+1 \right)^{2}-1=-2 \\ & \Leftrightarrow \quad \left( x-1 \right)^{2}+\left( y+1 \right)^{2}=0 \\ \end{align}


The only point which satisfies this equation is \displaystyle \left( x \right.,\left. y \right)=\left( 1 \right.,\left. -1 \right) because, for all other values of \displaystyle x and \displaystyle y , the left-hand side is strictly positive and therefore not zero.