Lösung 3.3:6b
Aus Online Mathematik Brückenkurs 1
The logarithm \displaystyle \text{lg 46 } satisfies the relation
\displaystyle \text{10}^{\text{lg 46 }}=46
and taking the natural logarithm of both sides, we obtain
\displaystyle \ln \text{10}^{\text{lg 46 }}=\ln 46
If we use the logarithm law,
\displaystyle \lg a^{b}=b\centerdot \lg a, on the left-hand side, the equality becomes
\displaystyle \lg 46\centerdot \ln 10=\ln 46
This shows that
\displaystyle \lg 46=\frac{\ln 46}{\ln 10}=\frac{3.828641}{2.302585}=1.6627578
and the answer is
\displaystyle \text{1}.\text{663}.
NOTE: In order to calculate the answer on a calculator, you press
\displaystyle \begin{align}
& \left[ 4 \right]\quad \left[ 6 \right]\quad \left[ \text{LN} \right]\quad \left[ \div \right]\quad \left[ 1 \right]\quad \left[ 0 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right] \\
& \quad \\
\end{align}