Lösung 3.3:6b

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche

The logarithm \displaystyle \text{lg 46 } satisfies the relation


\displaystyle \text{10}^{\text{lg 46 }}=46


and taking the natural logarithm of both sides, we obtain


\displaystyle \ln \text{10}^{\text{lg 46 }}=\ln 46


If we use the logarithm law, \displaystyle \lg a^{b}=b\centerdot \lg a, on the left-hand side, the equality becomes


\displaystyle \lg 46\centerdot \ln 10=\ln 46


This shows that


\displaystyle \lg 46=\frac{\ln 46}{\ln 10}=\frac{3.828641}{2.302585}=1.6627578


and the answer is \displaystyle \text{1}.\text{663}.

NOTE: In order to calculate the answer on a calculator, you press


\displaystyle \begin{align} & \left[ 4 \right]\quad \left[ 6 \right]\quad \left[ \text{LN} \right]\quad \left[ \div \right]\quad \left[ 1 \right]\quad \left[ 0 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right] \\ & \quad \\ \end{align}