Lösung 3.1:6b
Aus Online Mathematik Brückenkurs 1
The root sign in the denominator lies in a quadratic term and we therefore expand first the quadratic \displaystyle \left( \sqrt{3}-2 \right)^{2} using the square rule
\displaystyle \begin{align}
& \left( \sqrt{3}-2 \right)^{2}=\left( \sqrt{3} \right)^{2}-2\centerdot \sqrt{3}\centerdot 2+2^{2} \\
& =3-4\sqrt{3}+4=7-4\sqrt{3} \\
\end{align}
Thus,
\displaystyle \begin{align}
& \left( \sqrt{3}-2 \right)^{2}=\left( \sqrt{3} \right)^{2}-2\centerdot \sqrt{3}\centerdot 2+2^{2} \\
& =3-4\sqrt{3}+4=7-4\sqrt{3} \\
& \frac{1}{\left( \sqrt{3}-2 \right)^{2}-2}=\frac{1}{7-4\sqrt{3}-2}=\frac{1}{5-4\sqrt{3}} \\
\end{align}
and in the expression we can get rid of the root sign from the denominator by multiplying the top and bottom of the equation by the conjugate \displaystyle 5+4\sqrt{3},
\displaystyle \begin{align}
& \frac{1}{5-4\sqrt{3}}=\frac{1}{5-4\sqrt{3}}\centerdot \frac{5+4\sqrt{3}}{5+4\sqrt{3}}=\frac{5+4\sqrt{3}}{5^{2}-\left( 4\sqrt{3} \right)^{2}} \\
& =\frac{5+4\sqrt{3}}{5^{2}-4^{2}\left( \sqrt{3} \right)^{2}}=\frac{5+4\sqrt{3}}{25-16\centerdot 3} \\
& =\frac{5+4\sqrt{3}}{-23}=-\frac{5+4\sqrt{3}}{23} \\
\end{align}