Lösung 3.1:3c
Aus Online Mathematik Brückenkurs 1
We start by looking at the one part of the expression, \displaystyle \sqrt{16}. This root can be simplified since \displaystyle 16=4\centerdot 4=4^{2} which gives that \displaystyle \sqrt{16}=\sqrt{4^{2}}=4 and the whole expression becomes
\displaystyle \sqrt{16+\sqrt{16}}=\sqrt{16+4}=\sqrt{20}
Can
\displaystyle \sqrt{20}
be simplified? In order to answer this, we split
\displaystyle \text{2}0
up into integer factors,
\displaystyle 20=2\centerdot 10=2\centerdot 2\centerdot 5=2^{2}\centerdot 5
and see that
\displaystyle \text{2}0\text{ }
contains the square
\displaystyle \text{2}^{\text{2}}
as a factor and can therefore be taken outside the root sign,
\displaystyle \sqrt{20}=\sqrt{2^{2}\centerdot 5}^{2}=2\sqrt{5}