Lösung 2.3:4c
Aus Online Mathematik Brückenkurs 1
The equation \displaystyle \left( x-\text{3} \right)\left( x-\sqrt{\text{3}} \right)=0 is a second-degree equation which has \displaystyle x=\text{3 } and \displaystyle x=\sqrt{\text{3}} as roots; when \displaystyle x=\text{3 }, the first factor is zero and when \displaystyle x=\sqrt{\text{3}} the second factor is zero.
If we expand the equations left-hand side, we get the equation in standard form,
\displaystyle \begin{align}
& \left( x-\text{3} \right)\left( x-\sqrt{\text{3}} \right)=x^{2}-\sqrt{\text{3}}x-3x+3\sqrt{\text{3}} \\
& =x^{2}-\left( 3+\sqrt{\text{3}} \right)x+3\sqrt{\text{3}}=0 \\
\end{align}
NOTE: the general answer is,
\displaystyle ax^{2}-\left( 3+\sqrt{\text{3}} \right)ax+3\sqrt{\text{3}}a=0
where
\displaystyle a\ne 0
is a constant.