Lösung 2.3:3e
Aus Online Mathematik Brückenkurs 1
In this case, we see that the left-hand side contains the factor \displaystyle x+\text{3}, which we can take out to obtain
\displaystyle \begin{align}
& \left( x+\text{3} \right)\left( x-1 \right)-\left( x+\text{3} \right)\left( 2x-9 \right)=\left( x+\text{3} \right)\left( \left( x-1 \right)-\left( 2x-9 \right) \right) \\
& =\left( x+\text{3} \right)\left( x-1-2x+9 \right)=\left( x+\text{3} \right)\left( -x+8 \right). \\
\end{align}
This rewriting of the equation results in the new equation
\displaystyle \left( x+\text{3} \right)\left( -x+8 \right)=0
which has the solutions
\displaystyle x=-\text{3}
and
\displaystyle x=\text{8}.
We check the solution \displaystyle x=\text{8 } by substituting it into the equation:
LHS \displaystyle =\left( 8+3 \right)\centerdot \left( 8-1 \right)-\left( 8+3 \right)\centerdot \left( 2\centerdot 8-9 \right)=11\centerdot 7-11\centerdot 7=0= RHS