Lösung 1.1:1d
Aus Online Mathematik Brückenkurs 1
Just as in exercise c, we calculate the innermost bracket
- \displaystyle 3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5 = 3-(7-\bbox[#FFEEAA;,1.5pt]{\,10\,})-5
and work our way successively outwards,
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\firstcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\secondcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5\,.
All that remains is to combine the terms from left to right
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \firstcbox{#FFEEAA;}{\,3-(-3)\,}{6}-5
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \secondcbox{#FFEEAA;}{\,3-(-3)\,}{3+3}-5
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \secondcbox{#FFEEAA;}{\,3-(-3)\,}{6}-5
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 1.