Lösung 2.1:8c
Aus Online Mathematik Brückenkurs 1
When we come across large and complicated expressions, we have to work step by step;
as a first goal, we can multiply the top and bottom of the fraction
\displaystyle \frac{1}{1+\frac{1}{1+x}}
by
\displaystyle 1+x, so as to reduce it to an expression having one fraction sign:
\displaystyle \begin{align}
& \frac{1}{1+\frac{1}{1+\frac{1}{1+x}}}=\frac{1}{1+\frac{1}{1+\frac{1}{1+x}}\centerdot \frac{1+x}{1+x}}=\frac{1}{1+\frac{1+x}{\left( 1+\frac{1}{1+x} \right)\left( 1+x \right)}} \\
& \\
& =\frac{1}{1+\frac{1+x}{1+x+\frac{1+x}{1+x}}}=\frac{1}{1+\frac{1+x}{1+x+1}}=\frac{1}{1+\frac{x+1}{x+2}} \\
\end{align}
The next step is to multiply the top and bottom of our new expression by
\displaystyle x+2,
so as to obtain the final answer,
\displaystyle \begin{align}
& \frac{1}{1+\frac{x+1}{x+2}}\centerdot \frac{x+2}{x+2}=\frac{x+2}{\left( 1+\frac{x+1}{x+2} \right)\left( x+2 \right)}=\frac{x+2}{x+2+\frac{x+1}{x+2}\left( x+2 \right)} \\
& \\
& \frac{x+2}{x+2+x+1}=\frac{x+2}{2x+3} \\
& \\
\end{align}