ZusatzStoffTUB
Aus Online Mathematik Brückenkurs 1
Inhalt:
- erster Punkt
- zweiter Punkt
- dritter Punkt
Lernziele
Nach diesem Abschnitt sollten Sie folgendes können:
- erstes Ziel
- zweites Ziel
Kombinatorik
A - Permutationen
Permutationen sind die Möglichkeiten die eine Anordnung von Gegenständen zu Vertauschen, also die Anzahl der Weisen Objekte anzuordnen.
Beispiel 1
\displaystyle \star \diamond \bigcirc
\displaystyle \star \bigcirc \diamond
\displaystyle \diamond \bigcirc \star
\displaystyle \diamond \star \bigcirc
\displaystyle \bigcirc \star \diamond
\displaystyle \bigcirc \diamond \star
Es gibt \displaystyle 3 \cdot 2 \cdot 1 = 3! = 6 (3! = „3 Fakultät“) Möglichkeiten die Objekte
anzuordnen. Hierbei gilt, dass für den ersten Gegenstand drei verschiedene Möglichkeiten
vorhanden sind, an der zweiten Stelle nur noch zwei und an der dritten dann nur noch eine.
Allgemein: Für eine Gruppe von n Elementen gibt es \displaystyle n! := n (n-1) (n-2) … \cdot 3 \cdot 3 \cdot 2 \cdot 1 Möglichkeiten („n Fakultät“) die Objekte hintereinander anzuordnen (n! Permutationen). Zusätzliche Definition : \displaystyle 0! := 1 .
Beispiele: (1)Möglichkeiten der Anordnung von \displaystyle a, m, b, u ? \displaystyle 4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 (2)\displaystyle \dfrac{5!}{3!} = \dfrac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} = 5 \cdot 4 (3)\displaystyle \dfrac{(n+1)!}{(n-1)!} = \dfrac {(n+1) n (n-1) (n-2) \cdot ... \cdot 2 \cdot 1}{(n-1)(n-2) \cdot …. \cdot 2 \cdot 1} = (n+1) n (4)\displaystyle 2n! = 2 \cdot n \cdot (n-1) \cdot … \cdot 2 \cdot 1 \displaystyle (2n)! = 2n \cdot (2n-1) \cdot (2n-2) \cdot ... \cdot n \cdot (n-1) \cdot ... \cdot 2 \cdot 1
Stichproben aus n- elementigen Mengen:
Beispiel 1: Wie viele Worte mit 4 Buchstaben kann ich mit den Buchstaben A, R, T, E, N und S bilden? (mit Doppelbenutzung) 1. Buchstabe 2. Buchstabe 3. Buchstabe 4. Buchstabe 6 Möglichkeiten 6 Möglichkeiten 6 Möglichkeiten 6 Möglichkeiten
Also gibt es \displaystyle 6 \cdot 6 \cdot 6 \cdot 6 = 6^4 Möglichkeiten.
Allgemein: Es gibt \displaystyle n^k Möglichkeiten der Anordnung, die beim k- maligen Auswählen aus n Objekten mit Wiederholung und mit Berücksichtigung der Reihenfolge entstehen können.
Beispiel 2: Wie vorher nur ohne Doppelbenutzung.
1.Ziehen : 6 Möglichkeiten 2.Ziehen : 5 Möglichkeiten 3.Ziehen : 4 Möglichkeiten 4.Ziehen : 3 Möglichkeiten insgesamt: \displaystyle 6 \cdot 5 \cdot 4 \cdot 3 Möglichkeiten. \displaystyle 6 \cdot 5 \cdot 4 \cdot 3 = \dfrac{6!}{2!} = \dfrac{6!}{(6-4)!}
Allgemein: Es gibt \displaystyle n \cdot (n-1) \cdot (n-2) \cdot ... \cdot (n-k+1) = \dfrac{n!}{(n-k)!} Möglichkeiten aus n Objekten k Stück unter Berücksichtigung der Reihenfolge und ohne Zurücklegen auszusuchen.
Beispiel 3: „Lotto“ mit Reihenfolge
Anzahl der Möglichkeiten:
Aber: Die Reihenfolge ist bei echtem Lotto unwichtig. Für sechs feste Zahlen sind 6! Kombinationen in (*) enthalten.
Beispiel 4: Also: „echtes“ Lotto \displaystyle \dfrac{49!}{(49-6)!} \cdot \dfrac{1}{6!} = \dfrac{49!}{(49-6)!6!} = (49 6) \approx 13 \cdot 10^6 Möglichkeiten.
Auswahlmöglichkeiten für k aus n Elementen ohne Zurücklegen und ohne Reihenfolge:
\displaystyle (n k) = \dfrac{n!}{(n-k)!k!} „Binomialkoeffizient“
mit n /in N , k /in N , n /ge k