ZusatzStoffTUB

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche

Inhalt:

  • erster Punkt
  • zweiter Punkt
  • dritter Punkt

Lernziele

Nach diesem Abschnitt sollten Sie folgendes können:

  • erstes Ziel
  • zweites Ziel

Kombinatorik

A - Permutationen

Permutationen sind die Möglichkeiten die eine Anordnung von Gegenständen zu Vertauschen, also die Anzahl der Weisen Objekte anzuordnen.

Beispiel 1

\displaystyle \star \diamond \bigcirc
\displaystyle \star \bigcirc \diamond
\displaystyle \diamond \bigcirc \star
\displaystyle \diamond \star \bigcirc
\displaystyle \bigcirc \star \diamond
\displaystyle \bigcirc \diamond \star


Es gibt \displaystyle 3 \cdot 2 \cdot 1 = 3! = 6 (3! = „3 Fakultät“) Möglichkeiten die Objekte anzuordnen. Hierbei gilt, dass für den ersten Gegenstand drei verschiedene Möglichkeiten vorhanden sind, an der zweiten Stelle nur noch zwei und an der dritten dann nur noch eine.

Allgemein: Für eine Gruppe von n Elementen gibt es \displaystyle n! := n (n-1) (n-2) … \cdot 3 \cdot 3 \cdot 2 \cdot 1 Möglichkeiten („n Fakultät“) die Objekte hintereinander anzuordnen (n! Permutationen). Zusätzliche Definition : \displaystyle 0! := 1 .

Beispiele: (1)Möglichkeiten der Anordnung von \displaystyle a, m, b, u ? \displaystyle 4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 (2)\displaystyle \dfrac{5!}{3!} = \dfrac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} = 5 \cdot 4 (3)\displaystyle \dfrac{(n+1)!}{(n-1)!} = \dfrac {(n+1) n (n-1) (n-2) \cdot ... \cdot 2 \cdot 1}{(n-1)(n-2) \cdot …. \cdot 2 \cdot 1} = (n+1) n (4)\displaystyle 2n! = 2 \cdot n \cdot (n-1) \cdot … \cdot 2 \cdot 1 \displaystyle (2n)! = 2n \cdot (2n-1) \cdot (2n-2) \cdot ... \cdot n \cdot (n-1) \cdot ... \cdot 2 \cdot 1

Stichproben aus n- elementigen Mengen:

Beispiel 1: Wie viele Worte mit 4 Buchstaben kann ich mit den Buchstaben A, R, T, E, N und S bilden? (mit Doppelbenutzung) 1. Buchstabe 2. Buchstabe 3. Buchstabe 4. Buchstabe 6 Möglichkeiten 6 Möglichkeiten 6 Möglichkeiten 6 Möglichkeiten

Also gibt es \displaystyle 6 \cdot 6 \cdot 6 \cdot 6 = 6^4 Möglichkeiten.

Allgemein: Es gibt \displaystyle n^k Möglichkeiten der Anordnung, die beim k- maligen Auswählen aus n Objekten mit Wiederholung und mit Berücksichtigung der Reihenfolge entstehen können.

Beispiel 2: Wie vorher nur ohne Doppelbenutzung.

1.Ziehen : 6 Möglichkeiten 2.Ziehen : 5 Möglichkeiten 3.Ziehen : 4 Möglichkeiten 4.Ziehen : 3 Möglichkeiten insgesamt: \displaystyle 6 \cdot 5 \cdot 4 \cdot 3 Möglichkeiten. \displaystyle 6 \cdot 5 \cdot 4 \cdot 3 = \dfrac{6!}{2!} = \dfrac{6!}{(6-4)!}

Allgemein: Es gibt \displaystyle n \cdot (n-1) \cdot (n-2) \cdot ... \cdot (n-k+1) = \dfrac{n!}{(n-k)!} Möglichkeiten aus n Objekten k Stück unter Berücksichtigung der Reihenfolge und ohne Zurücklegen auszusuchen.

Beispiel 3: „Lotto“ mit Reihenfolge

Anzahl der Möglichkeiten: \dfrac{49!}{(49-6)!} = 49 \cdot 48 \cdot 47 \cdot 46 \cdot 45 \cdot 44 \approx 10 \cdot 10^9 (*)

Aber: Die Reihenfolge ist bei echtem Lotto unwichtig. Für sechs feste Zahlen sind 6! Kombinationen in (*) enthalten.

Beispiel 4: Also: „echtes“ Lotto \displaystyle \dfrac{49!}{(49-6)!} \cdot \dfrac{1}{6!} = \dfrac{49!}{(49-6)!6!} = (49 6) \approx 13 \cdot 10^6 Möglichkeiten.

Auswahlmöglichkeiten für k aus n Elementen ohne Zurücklegen und ohne Reihenfolge:

\displaystyle (n k) = \dfrac{n!}{(n-k)!k!} „Binomialkoeffizient“

mit n /in N , k /in N , n /ge k